Vector notation / manipulation question

Click For Summary
The discussion revolves around the manipulation of a 4x4 tensor (Xuv) and a 1x4 vector (Vu) in the context of linear algebra and general relativity. The user is confused about how to correctly apply the metric tensor to convert the vector into a dual vector and perform the necessary multiplications. Clarifications are provided regarding the use of indices, emphasizing that the superscripts and subscripts can be interchanged without changing the vector's components. It is also noted that the multiplication of a 1x4 vector with a 4x4 matrix is valid when the vector is treated as a row matrix. The conversation highlights the importance of understanding index notation to avoid complications with matrix multiplication.
tourjete
Messages
23
Reaction score
0

Homework Statement


Xuv is a 4x4 tensor and Vu is a vector.

Vu = (-1, 2, 0, -2) (i.e. it is a 1x4 vector).

Find the quantities Vu Vu and Vu Xuv



Homework Equations


Given above

The Attempt at a Solution


I'm having trouble finding Vu. Initially I thought that it should be the transpose of Vu (so a 4x1 vector) but then you can't multiply a 4x1 matrix with a 4x4 matrix, which the tensor is.

Also, my book says that you can turn a vector into a dual vector by doing
Vu = ηuv Vv. However, I don't kow Vv; I only know Vu

Can somebody point me in the right direction? I've taken linear algebra before so I should understand this but my teacher used a different notation than the general relativity class I'm taking right now uses.
 
Physics news on Phys.org
tourjete said:
Also, my book says that you can turn a vector into a dual vector by doing
Vu = ηuv Vv. However, I don't kow Vv; I only know Vu

\nu is just an index, it will range from 0 to 3 (or 1 to 4) just like \mu. If you know V^{\mu}, then you know V^{\nu}. The components of the vector do not change just because one uses a different index to refer to them.

What is the metric tensor in this case (i.e. what type of space-time are you using)? What is your tensor X^{\mu\nu}?
 
Superscripts and subscripts range from 0-3 (or 1-4, whatever your preference). Calling a superscript a different letter has no significance. It's only when an index is repeated that you should interpret this to mean that the index should be the same for both.
 
I'm in Minkowski flat space-time so the metric tensor is \begin{array}{ccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \end{array}

and the tensor is
\begin{array}{ccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2 \end{array}

I'm afraid I'm still confused. So
Vu = ηuvVu? This still makes no sense to me because you can't multiply a 4x4 by a 1x4 matrix.
 
This still makes no sense to me because you can't multiply a 4x4 by a 1x4 matrix.

Sure you can. You just multiply the 1x4 on the left of the matrix. (Whether this is what your instructor wants you to do is a different story. It's a matter of convention whether up-index vectors represent row matrices multiplied on the left of the transformation matrix or column matrices multplied on the right.)Really, though, you're trying to jump into representing things with matrices when you don't have a grasp of the underlying math yet. Index notation frees you from dealing with actual matrix multiplication at all.

Expand the implied summation to see what you need to do.

v_\mu = \eta_{\mu \nu} v^\nu = \eta_{\mu 1} v^1 + \eta_{\mu 2} v^2 + \eta_{\mu 3} v^3 + \eta_{\mu 4} v^4
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 7 ·
Replies
7
Views
728
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K