Vectors and their derivative proof

Click For Summary

Discussion Overview

The discussion revolves around proving a mathematical relationship involving the derivatives of a position vector r(t) = (x(t), y(t), z(t)). Participants explore the implications of the dot product of the first and second derivatives of the vector, specifically showing that if the dot product of the first derivative with itself equals one, then the dot product of the first and second derivatives must equal zero.

Discussion Character

  • Mathematical reasoning, Technical explanation, Homework-related

Main Points Raised

  • Some participants clarify the notation for the first and second derivatives of the position vector, denoting them as $\dot r$ and $\ddot r$, respectively.
  • It is stated that if $\dot r \cdot \dot r = 1$, then the goal is to show that $\dot r \cdot \ddot r = 0$.
  • One participant suggests taking the derivative of the equation $\dot r \cdot \dot r = 1$ to explore the relationship further.
  • Another participant expresses uncertainty about the connection and questions whether the derivative of the dot product would equal zero.
  • A later reply confirms that the derivative does equal zero and discusses the application of the product rule for derivatives in this context.
  • It is noted that applying the product rule leads to the conclusion that $2 \dot r \cdot \ddot r = 0$, which is the desired result.
  • Participants express ongoing struggle to see the connections between the steps involved in the proof.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical steps involved, particularly the application of the product rule, but there remains uncertainty and confusion regarding the connections between these steps and the overall proof.

Contextual Notes

Some participants express difficulty in understanding the implications of the product rule and how it applies to the specific case of the position vector's derivatives. There may be missing assumptions or definitions that could clarify the discussion further.

brunette15
Messages
58
Reaction score
0
The question suggests that r(t) = (x(t),y(t),z(t)) is a position vector along some curve where t goes from negative to positive infinity. Now suppose t has been chosen so that 1 = the dot product of dr/dt and dr/dt. Show that 0 = the dot product of dr/dt and d^2r/dt^2.

I have attempted to expand the dot products then regroup them but I am having a bit of trouble with this :(
 
Physics news on Phys.org
brunette15 said:
The question suggests that r(t) = (x(t),y(t),z(t)) is a position vector along some curve where t goes from negative to positive infinity. Now suppose t has been chosen so that 1 = the dot product of dr/dt and dr/dt. Show that 0 = the dot product of dr/dt and d^2r/dt^2.

I have attempted to expand the dot products then regroup them but I am having a bit of trouble with this :(

Hi brunette15! Welcome to MHB! (Smile)

Let's denote $\dot r = \d r t$ and $\ddot r = \frac{d^2r}{dt^2}$.
This is a common notation to denote time derivatives.

Then we have:
$$\dot r \cdot \dot r = 1\tag 1$$
and we want to prove that:
$$\dot r \cdot \ddot r \overset{?}{=} 0$$

What do you get if you take the derivative of $(1)$?
That is:
$$\frac{d}{dt}(\dot r \cdot \dot r)$$
(Wondering)
 
I like Serena said:
Hi brunette15! Welcome to MHB! (Smile)

Let's denote $\dot r = \d r t$ and $\ddot r = \frac{d^2r}{dt^2}$.
This is a common notation to denote time derivatives.

Then we have:
$$\dot r \cdot \dot r = 1\tag 1$$
and we want to prove that:
$$\dot r \cdot \ddot r \overset{?}{=} 0$$

What do you get if you take the derivative of $(1)$?
That is:
$$\frac{d}{dt}(\dot r \cdot \dot r)$$
(Wondering)

Thanks IlikeSerena! I am still struggling to see a connection. Would $$\frac{d}{dt}(\dot r \cdot \dot r)$$ just equal 0 then?
 
I like Serena said:
Hi brunette15! Welcome to MHB! (Smile)

Let's denote $\dot r = \d r t$ and $\ddot r = \frac{d^2r}{dt^2}$.
This is a common notation to denote time derivatives.

Then we have:
$$\dot r \cdot \dot r = 1\tag 1$$
and we want to prove that:
$$\dot r \cdot \ddot r \overset{?}{=} 0$$

What do you get if you take the derivative of $(1)$?
That is:
$$\frac{d}{dt}(\dot r \cdot \dot r)$$
(Wondering)

Thankyou! I am still struggling to see a connection however... :/
 
brunette15 said:
Thanks IlikeSerena! I am still struggling to see a connection. Would $$\frac{d}{dt}(\dot r \cdot \dot r)$$ just equal 0 then?

Yes. (Nod)

brunette15 said:
Thankyou! I am still struggling to see a connection however... :/

The product rule for derivatives says:
$$\d {} x (f(x) \cdot g(x)) = f'(x)g(x) + f(x)g'(x)$$

Similarly we can expect that:
$$\d {} t (\mathbf{\dot r} \cdot \mathbf{\dot r}) = \mathbf{\ddot r} \cdot \mathbf{\dot r} + \mathbf{\dot r} \cdot \mathbf{\ddot r} = 2 \mathbf{\dot r} \cdot \mathbf{\ddot r} = 0$$
which is what we need to prove.

That leaves showing that this is actually the case. (Thinking)
 
I like Serena said:
Yes. (Nod)
The product rule for derivatives says:
$$\d {} x (f(x) \cdot g(x)) = f'(x)g(x) + f(x)g'(x)$$

Similarly we can expect that:
$$\d {} t (\mathbf{\dot r} \cdot \mathbf{\dot r}) = \mathbf{\ddot r} \cdot \mathbf{\dot r} + \mathbf{\dot r} \cdot \mathbf{\ddot r} = 2 \mathbf{\dot r} \cdot \mathbf{\ddot r} = 0$$
which is what we need to prove.

That leaves showing that this is actually the case. (Thinking)

Thankyou so much!
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
8K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K