MHB Vectors and their derivative proof

Click For Summary
The discussion revolves around proving that the dot product of the first derivative of a position vector, dr/dt, and its second derivative, d^2r/dt^2, equals zero. It begins with the premise that the dot product of dr/dt with itself equals one. Participants suggest using the product rule for derivatives to derive the relationship, leading to the conclusion that the derivative of the dot product results in zero. This implies that the first derivative is orthogonal to the second derivative, confirming the required proof. The conversation highlights the application of vector calculus in understanding motion along a curve.
brunette15
Messages
58
Reaction score
0
The question suggests that r(t) = (x(t),y(t),z(t)) is a position vector along some curve where t goes from negative to positive infinity. Now suppose t has been chosen so that 1 = the dot product of dr/dt and dr/dt. Show that 0 = the dot product of dr/dt and d^2r/dt^2.

I have attempted to expand the dot products then regroup them but I am having a bit of trouble with this :(
 
Physics news on Phys.org
brunette15 said:
The question suggests that r(t) = (x(t),y(t),z(t)) is a position vector along some curve where t goes from negative to positive infinity. Now suppose t has been chosen so that 1 = the dot product of dr/dt and dr/dt. Show that 0 = the dot product of dr/dt and d^2r/dt^2.

I have attempted to expand the dot products then regroup them but I am having a bit of trouble with this :(

Hi brunette15! Welcome to MHB! (Smile)

Let's denote $\dot r = \d r t$ and $\ddot r = \frac{d^2r}{dt^2}$.
This is a common notation to denote time derivatives.

Then we have:
$$\dot r \cdot \dot r = 1\tag 1$$
and we want to prove that:
$$\dot r \cdot \ddot r \overset{?}{=} 0$$

What do you get if you take the derivative of $(1)$?
That is:
$$\frac{d}{dt}(\dot r \cdot \dot r)$$
(Wondering)
 
I like Serena said:
Hi brunette15! Welcome to MHB! (Smile)

Let's denote $\dot r = \d r t$ and $\ddot r = \frac{d^2r}{dt^2}$.
This is a common notation to denote time derivatives.

Then we have:
$$\dot r \cdot \dot r = 1\tag 1$$
and we want to prove that:
$$\dot r \cdot \ddot r \overset{?}{=} 0$$

What do you get if you take the derivative of $(1)$?
That is:
$$\frac{d}{dt}(\dot r \cdot \dot r)$$
(Wondering)

Thanks IlikeSerena! I am still struggling to see a connection. Would $$\frac{d}{dt}(\dot r \cdot \dot r)$$ just equal 0 then?
 
I like Serena said:
Hi brunette15! Welcome to MHB! (Smile)

Let's denote $\dot r = \d r t$ and $\ddot r = \frac{d^2r}{dt^2}$.
This is a common notation to denote time derivatives.

Then we have:
$$\dot r \cdot \dot r = 1\tag 1$$
and we want to prove that:
$$\dot r \cdot \ddot r \overset{?}{=} 0$$

What do you get if you take the derivative of $(1)$?
That is:
$$\frac{d}{dt}(\dot r \cdot \dot r)$$
(Wondering)

Thankyou! I am still struggling to see a connection however... :/
 
brunette15 said:
Thanks IlikeSerena! I am still struggling to see a connection. Would $$\frac{d}{dt}(\dot r \cdot \dot r)$$ just equal 0 then?

Yes. (Nod)

brunette15 said:
Thankyou! I am still struggling to see a connection however... :/

The product rule for derivatives says:
$$\d {} x (f(x) \cdot g(x)) = f'(x)g(x) + f(x)g'(x)$$

Similarly we can expect that:
$$\d {} t (\mathbf{\dot r} \cdot \mathbf{\dot r}) = \mathbf{\ddot r} \cdot \mathbf{\dot r} + \mathbf{\dot r} \cdot \mathbf{\ddot r} = 2 \mathbf{\dot r} \cdot \mathbf{\ddot r} = 0$$
which is what we need to prove.

That leaves showing that this is actually the case. (Thinking)
 
I like Serena said:
Yes. (Nod)
The product rule for derivatives says:
$$\d {} x (f(x) \cdot g(x)) = f'(x)g(x) + f(x)g'(x)$$

Similarly we can expect that:
$$\d {} t (\mathbf{\dot r} \cdot \mathbf{\dot r}) = \mathbf{\ddot r} \cdot \mathbf{\dot r} + \mathbf{\dot r} \cdot \mathbf{\ddot r} = 2 \mathbf{\dot r} \cdot \mathbf{\ddot r} = 0$$
which is what we need to prove.

That leaves showing that this is actually the case. (Thinking)

Thankyou so much!
 

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
8K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K