Velocity Addition in Special Relativity

rajark
Messages
16
Reaction score
0
Hi All,

Pardon me if this question looks so silly.

Trying to understand velocity addition in special relativity.

Say velocity components as measured in stationary frame of reference S are u, v, w in x, y, Z directions respectively and those in moving frame S' are u', v', w' in x', y', z' directions respectively. Let the velocity of relative motion between the reference frames is V and the motion is along x(or x') direction. Then velocity addition equations are as follows

u = (u'+V)/(1+(u'V/c^2)) -----(i)

v = {v'[1-(v^2/c^2)]^(1/2)}/[1+(u'V/c^2)] -----(ii)

w = {w'[1-(v^2/c^2)]^(1/2)}/[1+(u'V/c^2)] -----(iii)

Now say if light is emitted in the moving frame S' in its direction of motion x' i.e u'=c, then an observer in S measure the speed as u=c according to the equation (i)

But how do I check using eqn (ii) that light emitted in y' direction in frame S' has speed c in frame S. I substitute u'=0 and v'=c in eqn (ii), but that leads to v=c[1-(v^2/c^2)]^(1/2)

Please help me in figuring out where I go wrong
 
Physics news on Phys.org
rajark said:
But how do I check using eqn (ii) that light emitted in y' direction in frame S' has speed c in frame S. I substitute u'=0 and v'=c in eqn (ii), but that leads to v=c[1-(v^2/c^2)]^(1/2)
Don't forget equation (i): The light will have a component of velocity in the x direction.
 
Thanks for pointing out, Doc
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...

Similar threads

Replies
4
Views
1K
Replies
15
Views
2K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
31
Views
2K
Replies
20
Views
2K
Back
Top