A Velocity Verlet for relativistic simulation

  • A
  • Thread starter Thread starter Philip Koeck
  • Start date Start date
Click For Summary
Using the Velocity Verlet algorithm for simulating a fast electron intersecting slower electrons is debated, particularly due to its limitations with velocity-dependent accelerations. The fast electron's velocity is nearly constant, which may justify its use in this specific scenario. However, an alternative approach involving four-vectors is suggested, as it maintains a constant magnitude and relates to the Lorentz force law through four momentum. This method could provide a more accurate representation of relativistic effects. The discussion highlights the importance of considering different algorithms for complex simulations.
Philip Koeck
Gold Member
Messages
801
Reaction score
229
I'm simulating a situation that's partly relativistic and I'm wondering if it's wise to use Velocity Verlet.

A fast electron (200 keV or roughly 208 000 000 m/s) travels along the z-axis and intersects a beam of slower electrons (1 keV or roughly 20 000 000 m/s) that are moving along the x-axis.

I treat the slower electrons as non-relativistic.

For the fast electron I assume it's travelling essentially in the z-direction at all times, which is very accurate as far as I can see.
So I use the parallel corrected mass in the z-direction and the orthogonal in x and y to get the acceleration of the fast electron at every time step.

I realise that velocity verlet is not intended for accelerations that are velocity-dependent, but in this case the velocity of the fast electron is almost constant so γ and γ3 are almost constant during the whole simulation.

Does it sound okay to use Velocity Verlet in this case or should I consider a different algorithm?
 
Physics news on Phys.org
I don't know the answer to your question about the integrator, but you could try working with four-vectors. The four velocity has a constant magnitude by definition and the Lorentz force law relates to it via the four momentum which is the invariant mass times the four velocity.
 
  • Like
Likes Philip Koeck
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...