A Velocity Verlet for relativistic simulation

  • A
  • Thread starter Thread starter Philip Koeck
  • Start date Start date
Philip Koeck
Gold Member
Messages
801
Reaction score
229
I'm simulating a situation that's partly relativistic and I'm wondering if it's wise to use Velocity Verlet.

A fast electron (200 keV or roughly 208 000 000 m/s) travels along the z-axis and intersects a beam of slower electrons (1 keV or roughly 20 000 000 m/s) that are moving along the x-axis.

I treat the slower electrons as non-relativistic.

For the fast electron I assume it's travelling essentially in the z-direction at all times, which is very accurate as far as I can see.
So I use the parallel corrected mass in the z-direction and the orthogonal in x and y to get the acceleration of the fast electron at every time step.

I realise that velocity verlet is not intended for accelerations that are velocity-dependent, but in this case the velocity of the fast electron is almost constant so γ and γ3 are almost constant during the whole simulation.

Does it sound okay to use Velocity Verlet in this case or should I consider a different algorithm?
 
Physics news on Phys.org
I don't know the answer to your question about the integrator, but you could try working with four-vectors. The four velocity has a constant magnitude by definition and the Lorentz force law relates to it via the four momentum which is the invariant mass times the four velocity.
 
  • Like
Likes Philip Koeck
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top