Verify Stokes' Theorem for this vector field on a surface

Click For Summary

Homework Help Overview

The discussion revolves around verifying Stokes' Theorem for a vector field on a specified surface. Participants are exploring the parameterization of the surface and the line differentials involved in the theorem's application.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss various parameterizations for the surface and boundary curve, with some questioning the appropriateness of the proposed parameterizations. There are attempts to clarify the definitions of line and area differentials, as well as the need for correct limits in integrals.

Discussion Status

Several participants have provided insights into parameterization techniques and the calculation of differentials. There is an ongoing exploration of the correct limits for integrals, with some participants acknowledging errors in their previous assumptions. The discussion remains open, with no explicit consensus reached yet.

Contextual Notes

Some participants note that the original parameterization may not accurately represent the surface in question, and there are references to the need for drawing diagrams to aid understanding. Additionally, there are mentions of homework constraints that may influence the approach taken.

Elder1994
Messages
6
Reaction score
1
Homework Statement
Hello, my H.W states: Verify the Stokes Theorem for the vector field A=[(4x/3 - 2y), (3y - x), 0] and the surface F:= {(x/3)^2 + (y/2)^2 =< 1, z = 0}
Relevant Equations
∫∫∇×A⋅dS=∫A⋅dr
I do not understand how can I parameterize the surface and area and line differentials.
 
Physics news on Phys.org
You must post some try or thought for us to help you. In any case, I would say that parametrize a surface or a line is to assign one or more parameters to each point on the surface or the line, for example, imagine the parabola defined in the ##x-y## plane by the equation
$$y=\frac{x(1-x)}{2}$$ you can parametrize it like $$y=-1+3t-2t^2, x=2-2t, \qquad \text{ with } -\infty < t <\infty$$
Notice that ##t## is a parameter, and that, for any choice of ##t## you get a point ##(x,y)## that lies in the desired parabola. In general, to parametrize a curve you will need one parameter and to parametrize a surface you will need two parameters.

Post some tries and we will be able to help you more.
 
  • Like
Likes   Reactions: berkeman
What did you get for ##\nabla \times \vec A##? Think about parameterizing the surface with ##x = 3\cos\theta,~y=2\sin\theta## and similarly for the boundary curve.
 
LCKurtz said:
Think about parameterizing the surface with ##x = 3\cos\theta,~y=2\sin\theta## and similarly for the boundary curve.

Would this not be the parameterization for the boundary and not the surface?
 
  • Like
Likes   Reactions: vanhees71
Hello, I've read all your comments, thanks for answering! I've tried to solve the problem and for the line integral, I used de parametrization: ## x = 3\cos\theta, ~y=2\sin\theta ##. I also defined my ##d\vec r## as ##(-\sin\theta , \cos\theta , 0) d\theta##, after this the line integral (from 0 to ##2\pi##) gave me ## \pi## as result. Then for the surface integral the ## \nabla \times \vec A ## , I obtained ## (0,0,1)## and the normal vector ##(\frac {\partial r(u,v)} {\partial u} \times \frac {\partial r(u,v} {\partial v})## ( where ##r(u,v) = (u,v,0)##) is ##(0,0,1)## as well. With all this, and using a change of variables my surface integral is: ## \int_{0}^{2\pi} \int_{0}^1 r \, dr \, d\theta##
This way, both results are ##\pi##, but I'm not sure if I chose the right limits and the right parametization.
 
Elder1994 said:
I also defined my ##d\vec r## as ##(-\sin\theta , \cos\theta , 0) d\theta##, after this the line integral (from 0 to ##2\pi##) gave me ##\pi## as result.

If you want the differential of the parametrization ##\vec r(\theta)## you have defined, you will have to use it:

##\vec r(\theta)=(x(\theta),y(\theta),z(\theta))##

You know what ##x(\theta)##, ##y(\theta)##, and ##z(\theta)## are because they have been given to you explicitly. If you wish to find the differential ##d\vec r##, you will have to differentiate each coordinate of the vector function with respect to your independent variable ##\theta##:

##\frac{d\vec r}{d\theta}=(\frac{d}{d\theta}x(\theta),\frac{d}{d\theta}y(\theta),\frac{d}{d\theta}z(\theta))##

This is your ##d\vec r##; just "append" ##d\theta## to the right sides of the entire expression and "cancel" them out when necessary. Someone can explain this better than me, I am sure.

Elder1994 said:
##r(u,v) = (u,v,0)##

This is not the parametrization of the ellipse described in the problem:

##F=\{(x,y,z)\in \mathbb{R}^3: (\frac{x}{3})^2+(\frac{y}{2})^2\leq 1, z=0\}##

Try to formulate one using polar coordinates. It should be very similar to the parametrization for the boundary given earlier, as already stated. Try drawing a picture of the thing, because it will help. You should not need to draw the whole 3-D space, by the way.
 
Last edited:
Eclair_de_XII said:
Would this not be the parameterization for the boundary and not the surface?
Yes. I inadvertently left out the ##r## going from ##0## to ##1##. And for the OP's benefit, I think he should get ##6\pi## for the answer to both.
 
Hello, I reviewed the problem and I found indeed that the limits that I used were wrong, changing that the answer for both integrals is ## 6\pi ## ! Thank you.
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
20
Views
3K
Replies
6
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
14
Views
2K