I Verifying Integration of ##\int_0^1 x^m \ln x \, \mathrm{d}x##

Click For Summary
The computation of the integral ##\int_0^1 x^m \ln x \, \mathrm{d}x## is verified using integration by parts and L'Hopital's rule. The steps show that the limit as x approaches 0 leads to the result of ##\frac{-1}{(m+1)^2}##. The application of L'Hopital's rule is confirmed to be correct throughout the process. Additionally, when m=0, the symmetry of the graphs of y=log x and y=e^x supports the result. The integration is validated, confirming the accuracy of the calculations.
murshid_islam
Messages
468
Reaction score
21
TL;DR
Is my Integration ok?
I'm trying to compute ##\int_0^1 x^m \ln x \, \mathrm{d}x##. I'm wondering if the bit about the application of L'Hopital's rule was ok. Can anyone check?

Letting ##u = \ln x## and ##\mathrm{d}v = x^m##, we have ##\mathrm{d}u = \frac{1}{x}\mathrm{d}x ## and ##v = \frac{x^{m+1}}{m+1}##

##\int_0^1 x^m \ln(x) \, \mathrm{d}x##

##= \left. \frac{1}{m+1} x^{m+1} \ln(x) \right|_{0}^{1} - \int_{0}^{1} \frac{x^m}{m+1} \, \mathrm{d}x##

##= \frac{1}{m+1} \left(0 - \lim_{x \to 0} x^{m+1} \ln(x) \right) - \left. \frac{x^{m+1}}{(m+1)^2} \right|_{0}^{1}##

##= \frac{1}{m+1} \left(\lim_{x \to 0} x^{m+1} \ln\left(\frac{1}{x}\right) \right) - \frac{1}{(m+1)^2} ##

##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{\ln(1/x)}{1/x^{m+1}} \right) - \frac{1}{(m+1)^2} ##

##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{x (-1/x^2)}{-(m+1)x^{-m-2}} \right) - \frac{1}{(m+1)^2} ##

##= \frac{1}{m+1} \left(\lim_{x \to 0}\frac{x^{m+1}}{m+1} \right) - \frac{1}{(m+1)^2} ##

## = 0 - \frac{1}{(m+1)^2} ##

## = \frac{-1}{(m+1)^2} ##
 
Last edited:
Physics news on Phys.org
It seems OK. For verification, say m=0 the graphs of y=log x and y=e^x are symmetric wrt line y=x, the integration
\int_{-\infty}^0 e^x dx = 1
equals with your result putting minus sign.
 
Last edited:
  • Like
Likes murshid_islam
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K