MHB Verifying Solution for Exponentially Distributed Random Vars.

Click For Summary
The discussion focuses on calculating the probability $\Phi$ for two independent and identically distributed exponential random variables $X$ and $Y$. The initial analytical solution presented does not align with simulation results, prompting a request for clarification or correction. The derived expression for $\Phi involves multiple probability calculations and expectations, ultimately leading to a formula that incorporates the parameters $A$, $B$, and others. The poster emphasizes that intermediate steps were omitted initially, which could lead to confusion, and they provide a more detailed breakdown of the calculations. The final expression for $\Phi is presented, aiming for accuracy in the context of the problem.
user_01
Messages
5
Reaction score
0
Given two i.i.d. random variables $X,Y$, such that $X\sim \exp(1), Y \sim \exp(1)$. I am looking for the probability $\Phi$. However, the analytical solution that I have got does not match with my simulation. I am presenting it here with the hope that someone with rectifies my mistake.

:


$$\Phi =\mathbb{P}\left[P_v \geq A + \frac{B}{Y}\right] $$

$$
P_v=
\left\{
\begin{array}{ll}
a\left(\frac{b}{1+\exp\left(-\bar \mu\frac{P_s X}{r^\alpha}+\varphi\right)}-1\right), & \text{if}\ \frac{P_s X}{r^\alpha}\geq P_a,\\
0, & \text{otherwise}.
\end{array}
\right.
$$

---
**My solution**

\begin{multline}
\Phi = \mathbb{P}\left[ a\left(\frac{b}{1+\exp\left(-\bar \mu\frac{P_s X}{r^\alpha}+\varphi\right)}-1\right) \geq A + \frac{B}{Y}\right]\mathbb{P}\left[X \geq \frac{P_ar^\alpha}{P_s}\right] + {\mathbb{P}\left[0 \geq A + \frac{B}{Y}\right] \mathbb{P}\left[X \geq \frac{P_ar^\alpha}{P_s}\right]}
\end{multline}

Given that $\mathbb{P}[0>A+\frac{B}{Y}] = 0$

$$ \Phi = \mathbb{P}\left[a\left(\frac{b}{1+\exp\left(-\bar \mu\frac{P_s X}{r^\alpha}+\varphi\right)}-1\right) \geq A + \frac{B}{Y}\right] \exp\left(-\frac{P_ar^\alpha}{P_s}\right) $$

consider $D = A + a$, $c = \frac{\bar{\mu}P_s}{r^{\alpha}}$

$$ \Phi = \mathbb{P} \left[Y \geq \frac{1}{ab}\mathbb{E}_Y[DY + B]. \mathbb{E}_X [1+e^\varphi e^{-c X}] \right] $$

$$\Phi = \exp\left(-\frac{D+B}{ab}\left(1 + \frac{e^\varphi}{1+c}\right)\right)\exp\left(-\frac{P_a r^\alpha}{P_s}\right) $$
 

Attachments

  • pic_1.PNG
    pic_1.PNG
    6.7 KB · Views: 109
Physics news on Phys.org
I did not include the whole intermediate steps in the above solution which may cause confusion. Hence those steps are now presented below.

---
**My solution**

\begin{multline}
\Phi = \mathbb{P}\left[ a\left(\frac{b}{1+\exp\left(-\bar \mu\frac{P_s X}{r^\alpha}+\varphi\right)}-1\right) \geq A + \frac{B}{Y}\right]\mathbb{P}\left[X \geq \frac{P_ar^\alpha}{P_s}\right] + {\mathbb{P}\left[0 \geq A + \frac{B}{Y}\right] \mathbb{P}\left[X \geq \frac{P_ar^\alpha}{P_s}\right]}
\end{multline}

Given that $\mathbb{P}[0>A+\frac{B}{Y}] = 0$

$$ \Phi = \mathbb{P}\left[a\left(\frac{b}{1+\exp\left(-\bar \mu\frac{P_s X}{r^\alpha}+\varphi\right)}-1\right) \geq A + \frac{B}{Y}\right] \exp\left(-\frac{P_ar^\alpha}{P_s}\right) $$

Now consider only the first part of the expression on the right side of the equation, and letting $c = \frac{\bar{\mu}P_s}{r^{\alpha}}$.

$$ \mathbb{P}\left[a\left(\frac{b}{1+\exp\left(-\bar \mu\frac{P_s X}{r^\alpha}+\varphi\right)}-1\right) \geq A + \frac{B}{Y}\right] = \mathbb{P}\left[\frac{ab}{1+\exp\left(-c X+\varphi\right)}-a \geq A + \frac{B}{Y}\right]$$

consider $D = A + a$, and with mathematical manipulations, we get:

$$ \Phi = \mathbb{P} \left[Y \geq \frac{1}{ab}\mathbb{E}_Y[DY + B]. \mathbb{E}_X [1+e^\varphi e^{-c X}] \right] $$

$$\Phi = \exp\left(-\frac{D+B}{ab}\left(1 + \frac{e^\varphi}{1+c}\right)\right)\exp\left(-\frac{P_a r^\alpha}{P_s}\right) $$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...