Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I looked around before and could not find an answer to this question.

So given the reaction

neutron + X -> Y + gamma

and we assume that both initial particles are at rest.

Then using momentum balance we can find that the energy of the gamma is:

Egamma = -m_Y*c^2 + sqrt( (m_Y*c^2)^2 + 2Q*m_y*c^2).

Here is what I don't get. The question says to assume that m_Y*c^2 >> Q. Using the binomial theorem and rearranging the above you get that in the limit, E_gamma -> Q. Why does the energy of the gamma approach Q? I originally thought that the energy of the gamma would approach 0 since the increasing rest mass of Y would cause more energy to be needed as binding energy in Y, thus leaving less energy for the gamma.

Please help... ;)

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Very Basic Nuclear Reaction Q Value Problem

**Physics Forums | Science Articles, Homework Help, Discussion**