View Attachment to Understanding Taxes

  • Context: MHB 
  • Thread starter Thread starter anil86
  • Start date Start date
  • Tags Tags
    Taxes
Click For Summary

Discussion Overview

The discussion revolves around mathematical series and their representations, particularly focusing on binomial sums and complex analysis. Participants explore the derivation and manipulation of series related to the function $\frac{1}{\sqrt{1 - x^{2}}$ and its implications in a broader mathematical context.

Discussion Character

  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant introduces the binomial sum representation of $\frac{1}{\sqrt{1 - x^{2}}}$ and its expansion, suggesting it as a starting point for further exploration.
  • Another participant reiterates the same binomial sum and proposes a related series involving $\frac{x}{\sqrt{1 - x^{2}}}$, indicating a connection to the original series.
  • There is a suggestion that the sum of the series can be expressed in terms of the imaginary part of a complex function involving $e^{i\theta}$.
  • A subsequent post introduces a transformation involving $z = i\theta$ and provides a new expression for the imaginary part, indicating a potential pathway for further analysis.

Areas of Agreement / Disagreement

Participants appear to share a common interest in the mathematical series and their properties, but there is no explicit consensus on the implications or correctness of the derived expressions. The discussion remains exploratory with multiple approaches being presented.

Contextual Notes

Some assumptions regarding the convergence of the series and the conditions under which the transformations are valid are not fully addressed. The dependence on specific definitions of the functions involved may also influence the interpretations presented.

anil86
Messages
10
Reaction score
0
Please view attachment!
 

Attachments

  • Image0349.jpg
    Image0349.jpg
    87.8 KB · Views: 144
Mathematics news on Phys.org
anil86 said:
Please view attachment!

Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Are You able to proceed?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Are You able to proceed?...

Kind regards

$\chi$ $\sigma$

Please view attachment!View attachment 1687
 

Attachments

  • Image0352.jpg
    Image0352.jpg
    111.3 KB · Views: 113
chisigma said:
Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Is...

$\displaystyle 1 - e^{2\ z} = - e^{z}\ (e^{z} - e^{- z}) -> \sqrt{1 - e^{2\ z}} = i\ e^{\frac{z}{2}}\ \sqrt {e^{z} - e^{- z}}\ (1)$

... so that for $\displaystyle z = i\ \theta $ is...

$\displaystyle \text{Im}\ \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\} = \text{Im}\ \{ \frac{e^{i\ \frac{\theta}{2}}}{i\ \sqrt{e^{i\ \theta} + e^{- i\ \theta}}} \} = \frac{\sin \frac{\theta}{2} + \cos {\frac{\theta}{2}}}{2\ \sqrt{\sin \theta}}\ (2)$

Kind regards

$\chi$ $\sigma$
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K