View Attachment to Understanding Taxes

  • Context: MHB 
  • Thread starter Thread starter anil86
  • Start date Start date
  • Tags Tags
    Taxes
Click For Summary
SUMMARY

This discussion focuses on the mathematical derivation of a series using binomial sums and complex analysis. The key equations presented include the binomial series expansion for $\frac{1}{\sqrt{1 - x^{2}}}$ and its derivative $\frac{x}{\sqrt{1 - x^{2}}}$. The final result for the sum of the series is expressed as $S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\theta}}}\}$. Participants are encouraged to explore these mathematical concepts further to deepen their understanding.

PREREQUISITES
  • Understanding of binomial series expansions
  • Familiarity with complex analysis and imaginary numbers
  • Knowledge of calculus, particularly derivatives and integrals
  • Ability to manipulate exponential functions and their properties
NEXT STEPS
  • Study the properties of binomial series and their applications
  • Learn about complex functions and their derivatives
  • Explore the concept of imaginary numbers in mathematical analysis
  • Investigate the implications of the series sum in real-world applications
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the applications of complex analysis in series summation.

anil86
Messages
10
Reaction score
0
Please view attachment!
 

Attachments

  • Image0349.jpg
    Image0349.jpg
    87.8 KB · Views: 144
Mathematics news on Phys.org
anil86 said:
Please view attachment!

Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Are You able to proceed?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Are You able to proceed?...

Kind regards

$\chi$ $\sigma$

Please view attachment!View attachment 1687
 

Attachments

  • Image0352.jpg
    Image0352.jpg
    111.3 KB · Views: 112
chisigma said:
Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Is...

$\displaystyle 1 - e^{2\ z} = - e^{z}\ (e^{z} - e^{- z}) -> \sqrt{1 - e^{2\ z}} = i\ e^{\frac{z}{2}}\ \sqrt {e^{z} - e^{- z}}\ (1)$

... so that for $\displaystyle z = i\ \theta $ is...

$\displaystyle \text{Im}\ \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\} = \text{Im}\ \{ \frac{e^{i\ \frac{\theta}{2}}}{i\ \sqrt{e^{i\ \theta} + e^{- i\ \theta}}} \} = \frac{\sin \frac{\theta}{2} + \cos {\frac{\theta}{2}}}{2\ \sqrt{\sin \theta}}\ (2)$

Kind regards

$\chi$ $\sigma$
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K