Voltage and electrode surface area

AI Thread Summary
The discussion focuses on determining the minimum voltage required to initiate the electrolysis process in a brine solution using a graphite electrode. It emphasizes that while the minimum voltage is generally constant and not dependent on the electrode's surface area, the current produced is influenced by the surface area of the electrode. The minimum voltage for electrolysis of water is noted to be approximately 1.23 volts, although this value may vary under different conditions. Participants highlight the importance of understanding the relationship between voltage and current, with the consensus that while voltage remains stable, the current is affected by the electrode's surface area.
mksrm
Messages
1
Reaction score
0
TL;DR Summary
relation between minimum voltage and surface area of electrode
Hi

I am looking to find the equation that determines the minimum (and if possible maximum that might damage the electrode) voltage that starts the electrolysis process for a given area of a graphite electrode in a brine solution medium (lets say 30%) at equilibrium state.

Also how does the relation of voltage and maximum possible current to be applied be determined ?

Any help is greatly appreciated.
 
Chemistry news on Phys.org
Voltage is not electrode surface dependent. Current is.
 
mksrm said:
Summary: relation between minimum voltage and surface area of electrode

I am looking to find the equation that determines the minimum <<snip>> voltage that starts the electrolysis process

For the Minimum Voltage, the Wikipedia article is pretty good. And as Borek says, the electrode areas affect the current, not this minimum voltage:
Electrolysis of water requires a minimum potential difference of 1.23 volts, though at that voltage external heat is required from the environment.
https://en.wikipedia.org/wiki/Elect...r requires a,is required from the environment.
 
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!

Similar threads

Back
Top