1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Voltage of a point in varying permittivity medium problem

  1. Dec 27, 2015 #1
    1. The problem statement, all variables and given/known data
    - A point charge is placed at the origin of the medium.
    - The relative permittivity of the medium, [itex]\varepsilon_r = a / r[/itex], a is a constant, r is the radius from origin to any point around the charge.
    - Objective of this question is to find the expression for voltage.at any point around Q

    2. Relevant equations


    3. The attempt at a solution
    [itex]\vec E = \frac{Q}{4\pi \varepsilon_0 \varepsilon_r r^2} \vec r[/itex]
    [itex] = \frac{Q}{4\pi \varepsilon_0 (\frac{a}{r}) r^2} \vec r [/itex]
    [itex] = \frac{Q}{4\pi \varepsilon_0 a r }\vec r [/itex]

    [itex]V = - \int_\infty^r{\vec E \cdot d \vec l}[/itex]
    [itex] = - \int_\infty^r{ \frac{Q}{4\pi \varepsilon_0 a r } dr}[/itex]
    [itex] = - \frac{Q}{4\pi \varepsilon_0 a}[ln r - ln \infty] [/itex]
    [itex] = \frac{Q}{4\pi \varepsilon_0 a}[\ln \frac{\infty}{r}] [/itex]


    In the integration i use [itex]\infty[/itex] as lower boundary to assume the infinity is at 0 voltage.
    But the expression seems to be wrong, anyone know where did I messed up?
     
  2. jcsd
  3. Dec 27, 2015 #2
    Try to work by Gauss's Law in differential mode.
     
  4. Dec 27, 2015 #3
    Sorry, I don't quite get you. I have searched around about that differential form, I am not sure what should i find with it.
    [itex]Q = \int\int D \cdot ds = \int\int\int \rho_v dv[/itex]
    The Q is given in the question as a constant, D can be derived out by Coulomb's law.

    The answer for the question is
    [itex]V = \frac{Q}{4\pi \epsilon_0 a}\ln{r}[/itex]

    it seems as if the integration(in my 1st post) takes the lower boundary at r=1 and upper boundary at r = r
     
  5. Dec 28, 2015 #4
    I think than there is a trick on integration.
    Integration limits driven by ##dl## incrase. So I think the correct integral is:
    $$ V = -\int_r^\infty \mathbf{E}\cdot{d\mathbf{l}} \Rightarrow V = \frac{Q}{4\pi\epsilon_0a}\,\ln{r} - V_\infty $$
    and now you can take ##V_\infty=0##.
     
  6. Dec 28, 2015 #5

    TSny

    User Avatar
    Homework Helper
    Gold Member

    Your work looks correct. As you've discovered, you run into a problem if you try to set the potential equal to zero at infinity. The same thing happens for the potential due to an infinitely long, uniformly charged line of charge.

    So, you can just pick an arbitrary point for V = 0. As you stated in post #3, it looks like the given answer takes V = 0 at r = 1. However, the overall sign is incorrect in their answer. V should decrease as r increases, if Q is positive.
     
  7. Dec 28, 2015 #6
    That is correct for constant ##\epsilon##. The same calculation in this case produce the known result.
    Behaviour is the same as a charge ##Q## leaves on a 2D world.
     
  8. Dec 28, 2015 #7

    TSny

    User Avatar
    Homework Helper
    Gold Member

    We haver [itex]\vec E = \frac{Q}{4\pi \varepsilon_0 \varepsilon_r r^2} \hat r[/itex] which is valid for any "Class A" dielectric, even when ##\varepsilon_r## is not constant.

    If Q is positive you can see that ##\vec E## will be radially outward from Q as long as ##\varepsilon_r## is positive (as usual). In this case, V must decrease as r increases.
     
    Last edited: Dec 28, 2015
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Voltage of a point in varying permittivity medium problem
Loading...