- #1
agnimusayoti
- 240
- 23
- Homework Statement
- Find the volume in the first octant bounded by the coordinate planes and x + 2y + z = 4.
- Relevant Equations
- Multiple integrals.
First, I try to make a sketch and from that I take limit of integration from:
1. ##z_1 = 0## to ##z_2 = 4 - x -2y##
2. ##x_1 = 0## to## x_2 = 4- 2y ##
3. ##y_1 = 0## to ##y_2 = 2##
Then, I define infinitesimal volume element in the first octant as ##dV = 1/8 dz dz dy##.
Therefore,
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} (4 - x -2y) dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} (8 - 8y +6y^2) dx$$
$$V=1/8 (16) = 2$$.
But, final answer should be 16/3. So, I think I made a mistake when interpreting "the volume in the first octant" as 1/8 dV. Why the denominator is 3? Does the volume in the first octant is 1/3 of total volume? Thanks.
1. ##z_1 = 0## to ##z_2 = 4 - x -2y##
2. ##x_1 = 0## to## x_2 = 4- 2y ##
3. ##y_1 = 0## to ##y_2 = 2##
Then, I define infinitesimal volume element in the first octant as ##dV = 1/8 dz dz dy##.
Therefore,
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} \int_{z_1=0}^{z_2 = 4 - x -2y} dz dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} \int_{x_1=0}^{x_2=4-2y} (4 - x -2y) dy dx$$
$$V=1/8 \int_{y_1=0}^{y_2 = 2} (8 - 8y +6y^2) dx$$
$$V=1/8 (16) = 2$$.
But, final answer should be 16/3. So, I think I made a mistake when interpreting "the volume in the first octant" as 1/8 dV. Why the denominator is 3? Does the volume in the first octant is 1/3 of total volume? Thanks.
Last edited by a moderator: