MHB Volume of a triangle type shape with a square bottom

AI Thread Summary
To find the volume of the shape with a square base in the xy-plane and a triangular upper section, the volume is calculated in two parts. The first part is a cube with a volume of 1 for \(0 \leq z \leq 1\). The second part consists of triangular cross-sections for \(1 \leq z \leq 2\), where the volume of each slice is derived from the formula \(dV = \frac{1}{2} x \, dx\). By integrating the triangular portion and adding the cube's volume, the total volume is determined to be \(V = 1 + \frac{1}{2} \int_0^1 x \, dx = \frac{5}{4}\). This method effectively combines geometric principles to derive the overall volume of the solid.
Dustinsfl
Messages
2,217
Reaction score
5
How do I find the volume of this shape? The bottom is a square in the xy plane where \(0\leq x,y\leq 1\).

The object isn't a prism or pyramid so I am not sure what to do.

View attachment 1255
 

Attachments

Mathematics news on Phys.org
If I am interpreting this correctly, for $0\le z\le1$ you have a cube whose sieds are 1 unit in length, and for $1\le z\le2$ you have a solid whose cross-sections perpendicular to either the $x$ or $y$ axes are right triangles whose bases are 1 unit in length and altitudes vary linearly from 0 to 1, and so the volume by slicing is:

$$V=1+\frac{1}{2}\int_0^1 x\,dx=\frac{5}{4}$$
 
MarkFL said:
If I am interpreting this correctly, for $0\le z\le1$ you have a cube whose sieds are 1 unit in length, and for $1\le z\le2$ you have a solid whose cross-sections perpendicular to either the $x$ or $y$ axes are right triangles whose bases are 1 unit in length and altitudes vary linearly from 0 to 1, and so the volume by slicing is:

$$V=1+\frac{1}{2}\int_0^1 x\,dx=\frac{5}{4}$$

How did you derive this formula? Is the 1 the volume of the cube or is that part of the triangular shape?
 
Yes the 1 is the volume of the cubical portion of the solid, and for the upper part, the volume of a particular slice is:

$$dV=\frac{1}{2}bh\,dx$$

where the base is a constant 1 and the height is $x$, hence:

$$dV=\frac{1}{2}x\,dx$$

and so summing the slices (and adding in the cubical portion), we find:

$$V=1+\frac{1}{2}\int_0^1 x\,dx$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top