MHB Volume of a triangle type shape with a square bottom

Click For Summary
To find the volume of the shape with a square base in the xy-plane and a triangular upper section, the volume is calculated in two parts. The first part is a cube with a volume of 1 for \(0 \leq z \leq 1\). The second part consists of triangular cross-sections for \(1 \leq z \leq 2\), where the volume of each slice is derived from the formula \(dV = \frac{1}{2} x \, dx\). By integrating the triangular portion and adding the cube's volume, the total volume is determined to be \(V = 1 + \frac{1}{2} \int_0^1 x \, dx = \frac{5}{4}\). This method effectively combines geometric principles to derive the overall volume of the solid.
Dustinsfl
Messages
2,217
Reaction score
5
How do I find the volume of this shape? The bottom is a square in the xy plane where \(0\leq x,y\leq 1\).

The object isn't a prism or pyramid so I am not sure what to do.

View attachment 1255
 

Attachments

Mathematics news on Phys.org
If I am interpreting this correctly, for $0\le z\le1$ you have a cube whose sieds are 1 unit in length, and for $1\le z\le2$ you have a solid whose cross-sections perpendicular to either the $x$ or $y$ axes are right triangles whose bases are 1 unit in length and altitudes vary linearly from 0 to 1, and so the volume by slicing is:

$$V=1+\frac{1}{2}\int_0^1 x\,dx=\frac{5}{4}$$
 
MarkFL said:
If I am interpreting this correctly, for $0\le z\le1$ you have a cube whose sieds are 1 unit in length, and for $1\le z\le2$ you have a solid whose cross-sections perpendicular to either the $x$ or $y$ axes are right triangles whose bases are 1 unit in length and altitudes vary linearly from 0 to 1, and so the volume by slicing is:

$$V=1+\frac{1}{2}\int_0^1 x\,dx=\frac{5}{4}$$

How did you derive this formula? Is the 1 the volume of the cube or is that part of the triangular shape?
 
Yes the 1 is the volume of the cubical portion of the solid, and for the upper part, the volume of a particular slice is:

$$dV=\frac{1}{2}bh\,dx$$

where the base is a constant 1 and the height is $x$, hence:

$$dV=\frac{1}{2}x\,dx$$

and so summing the slices (and adding in the cubical portion), we find:

$$V=1+\frac{1}{2}\int_0^1 x\,dx$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K