Volume of water consumed by vacuum

Click For Summary
SUMMARY

The discussion centers on calculating the volume of water that can be drawn into a 3.79-liter container using a thermodynamic pump experiment. The pressure differential between the external environment (100 kPa) and the container (96 kPa) allows for a maximum of 4 kPa, but after accounting for the height of the water column, only 1.54834 kPa is available for suction. Using Boyle's Law, the final calculation shows that approximately 100 mL of water can enter the container, confirming that the initial assumptions were overly complex.

PREREQUISITES
  • Understanding of Boyle's Law and its application in gas behavior
  • Basic knowledge of pressure differentials and fluid dynamics
  • Familiarity with thermodynamic principles, particularly the Ideal Gas Law
  • Ability to perform unit conversions and calculations involving pressure and volume
NEXT STEPS
  • Study the applications of Boyle's Law in real-world scenarios
  • Learn about fluid dynamics principles, particularly in relation to pressure and height
  • Explore the Ideal Gas Law and its implications in thermodynamic systems
  • Investigate the effects of temperature changes on gas volume and pressure
USEFUL FOR

This discussion is beneficial for students and professionals in physics, engineering, and environmental science, particularly those interested in thermodynamics and fluid mechanics.

northmop
Messages
11
Reaction score
3
I'm trying to do the math for a backyard thermodynamic pump experiment, and getting stuck. Suppose an empty 3.79 liter container was airlocked by a vertical 25 cm long empty tube whose end sits at the top of an unlimited supply of water in a basin. The tube protrudes through the container such that there is a length of tube above the base of the container so that any water entering the container cannot escape back down the tube and into the basin. If the temperature of the external environment, water, and gas are all constant (295°K), what volume of water (density of 1000 kg/m3) would enter the container if the pressure differential between of the external environment (100 kPa) and the inside the container (96 kPa) is 4 kPa?

I know that some of the vacuum pressure will be consumed to maintain the 25 cm height of the water column in the tube. This means that 4 kPa - (9.80665 m/s2 * 1000 kg/m3 * 0.25 m) = 1.54834 kPa is "available" to vacuum up the water from the basin into the container. What I'm getting stuck with is how to calculate the hypothetical volume of water that will get sucked up and stored in the container: my head is mush after thinking about this too long. Would you please be so kind as to share the formulas used to figure this out?
 
Last edited:
Science news on Phys.org
I wanted to post this separately so that I don't confuse the question. Here's the short of my experiment. During the day the container warms up. As night passes, the container cools down and sucks up liquid. Using the Ideal Gas Law, one can determine a change in volume from the hottest point in the day (H) and the coolest point in the day (C). If the container was malleable, the volume of the container would change, either by expanding or collapsing, until the internal pressure of the container was equalized with the pressure of its external environment. That change in volume, ΔV, can be calculated as:

ΔV = VH – VC
VC = VH – ΔV
PH VH = n R TH
n = ( PH VH ) / ( R TH )
PC VC = n R TC
PC ( VH – ΔV ) = [ ( PH VH ) / ( R TH ) ] ( R TC )
PC VH – PC ΔV = ( PH VH R TC ) / ( R TH )
PC VH – PC ΔV = ( PH VH TC ) / ( TH )
– PC ΔV = ( PH VH TC ) / ( TH ) – ( PC VH )
PC ΔV = – ( PH VH TC ) / ( TH ) + ( PC VH )
ΔV = [ – ( PH VH TC ) / ( TH ) + ( PC VH ) ] / PC
ΔV = – ( PH VH TC ) / ( PC TH ) + ( PC VH / PC )
ΔV = – ( PH VH TC ) / ( PC TH ) + VH
ΔV = VH – ( PH VH TC ) / ( PC TH )
ΔV = VH [ 1 – ( PH TC ) / ( PC TH ) ]
ΔV = VH [ 1 – ( PH / PC ) ( TC / TH ) ]​

However, the jug is not malleable meaning that VH=VC and V is therefore a constant. A volume of matter will enter the jug when ΔV > 0 and exist the jug when ΔV < 0 in order to equalize its pressure with that of the external environment, PE. As my concern is when ΔV > 0, PC = PE and I get a final equation of:

ΔV = V [ 1 – ( PH / PE ) ( TC / TH ) ]​

What gives me the willies is that, though this theoretically will yield the volume of water sucked into the straw and container, it does not take into account having to overcome gravity to lift the water from the basin and maintain the water column as the container cools and fills; and hence why my head is mush and my question above.
 
Can you please provide a diagram (sketch)?
 
  • Like
Likes   Reactions: Delta2
Chestermiller said:
Can you please provide a diagram (sketch)?
How's this?
16253728353651148032918825198152.jpg
 
  • Like
Likes   Reactions: Delta2
The internal pressure would have to rise from 96 kPa to 98.5 kPa in order to stop the flow up the tube. So the liquid in the container would have to reduce the volume of gas in the container by a factor of 96/98.5.
 
  • Like
Likes   Reactions: Delta2 and northmop
Chestermiller said:
The internal pressure would have to rise from 96 kPa to 98.5 kPa in order to stop the flow up the tube. So the liquid in the container would have to reduce the volume of gas in the container by a factor of 96/98.5.
Now that you point it out, the answer is pretty obvious: Boyle's Law to the rescue!

P1V1= P2V2
96 kPa * 3.79 L = 98.5 kPa * V
V = 96 kPa * 3.79 L / 98.5 kPa
V = 3.69 L​

About 100 mL of water would enter the container. I was really overthinking the simplest thing. Thank you, Chestermiller, for putting my feet back on the ground.
 
  • Like
Likes   Reactions: Chestermiller and Delta2

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
13K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K