I von Neumann Measurement Scheme

Kyuubi
Messages
18
Reaction score
8
Greetings,
I would like to ask something about the von Neumann measurement scheme in the context of Time~symmetric QM and weak measurements in the popular Aharonov, Bergmann, and Lebowitz (1955, ABL) paper and the Aharonov, Albert, and Vaidman (1988, AAV) paper.

Particularly in the latter paper, they say "In quantum theory, the result of a measurement of a variable ##A## which has discrete eigenvalues ##a_i## must necessarily be one of those values. The Hamiltonian of the standard measurement procedure is

## H = -g(t)qA,##

where ##g(t)## is a normalized function with a compact support near the time of measurement, and ##q## is a canonical variable of the measuring device with a conjugate momentum ##\pi##".

For this, they reference von Neumann's Mathematical Foundations of Quantum Mechanics and say that "The Hamiltonian [above] is the effective Hamiltonian of a Stern-Gerlach measuring device..."

My problem is that all citations of von Neumann's book just site the book without the chapter. I am unable to find relevant discussion to learn about how this Hamiltonian is brought about. Would anyone kindly share resources for learning about this or even assist in finding the relevant part in von Neumann's book?
 
Physics news on Phys.org
The relevant part of the von Neumann's book is Chapter VI "The Measuring Process". But this is not the best way to learn it, it is explained much better in many later books and papers. One good example is https://arxiv.org/abs/1406.5535 Sec. 6.1.
 
  • Like
Likes gentzen and Kyuubi
I thank you profusely.
 
  • Like
Likes Demystifier
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top