MHB Wacky explanation in a student solutions manual for manipulating an equation

AI Thread Summary
The discussion revolves around a question from Stewart's College Algebra 4th Edition regarding the manipulation of a distance/rate/time equation. The confusion stems from the introduction of a factor of "2" when determining a common denominator. It is clarified that multiplying by 2 allows for integer coefficients, which simplifies the equation. The transformation of 2.5 into 5/2 also supports this approach, leading to the common denominator of 2r(r+8). Overall, the multiplication by 2 is a deliberate choice to facilitate easier calculations.
chr1s
Messages
2
Reaction score
0
In the answer book to Stewart's College Algebra 4th Edition, question 47 in Review for Chapter 2, it takes me, in a distance/rate/time problem, from 4/(r+8) + 2.5/(r) = 1 (which I got), to this common denominator procedure: "Multiplying by 2r(r+8), we get..." WHERE DID THEY GET THE "2"? It continues on to a quadratic procedure, all of which follows logically, and the answer, r = [-3 + (sq rt of 329)]/4, which seems to be right when I plug it back in. Can't figure out that 2... Thanks for anybody's help.
 
Mathematics news on Phys.org
First of all, the following property does indeed hold for all real numbers $x$, $y$ and $z$: if $x=y$, then $xz=yz$. (Note that it is not the case that the converse is true for all $x$, $y$ and $z$.) Therefore, the author of a proof or a solution has the right to multiply a true equation by any number he or she wants. This is not an error. The author's responsibility is to arrive at the solution. The reader has the right to ask, "Why is this true?", but the question "Why did the author do this?" is secondary.

Now, $2.5/r$ can be represented as $$\frac{5}{2r}$$. The author probably wanted to arrive at an equation with integer coefficients after multiplication.
 
chr1s said:
In the answer book to Stewart's College Algebra 4th Edition, question 47 in Review for Chapter 2, it takes me, in a distance/rate/time problem, from 4/(r+8) + 2.5/(r) = 1 (which I got), to this common denominator procedure: "Multiplying by 2r(r+8), we get..." WHERE DID THEY GET THE "2"? It continues on to a quadratic procedure, all of which follows logically, and the answer, r = [-3 + (sq rt of 329)]/4, which seems to be right when I plug it back in. Can't figure out that 2... Thanks for anybody's help.
The "2" is just because they want integer coefficients. If you just multiply both sides by r(r+ 8) you get 4r+ 2.5(r+ 8)= r(r+ 8). Multiplying by 2 gives 8r+ 5(r+ 8)= 2r(r+ 8).

Another way of looking at it is that 2.5= \frac{5}{2} so that original form can be written as 4/(r+ 8)+ 5/2r+ 1. Now the "common denominator" is 2r(r+ 8).
 
Thanks everybody. Certainly makes sense now.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top