Wallis' Formula and Quantum Mechanics

Click For Summary
SUMMARY

The discussion centers on the connection between Wallis' formula for π and quantum mechanics, highlighting the formula's geometric proof and its applications in quantization structures. Wallis' formula is expressed as π/2 = (2/1) * (2/3) * (4/3) * (4/5) ... A geometric proof can be found in a linked PDF, while the user also mentions exploring zeta and log functions in relation to Wallis' product. The conversation emphasizes the potential for these mathematical concepts to intersect with quantum mechanics and artistic applications.

PREREQUISITES
  • Understanding of Wallis' formula for π
  • Familiarity with geometric proofs in mathematics
  • Knowledge of zeta functions and their properties
  • Basic concepts of quantum mechanics
NEXT STEPS
  • Research geometric proofs of Wallis' formula
  • Explore the properties of zeta functions and their applications
  • Study the relationship between quantum mechanics and mathematical frameworks
  • Investigate the use of quantization structures in art
USEFUL FOR

Mathematicians, physicists, artists exploring mathematical concepts, and anyone interested in the intersection of geometry, quantum mechanics, and artistic expression.

stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
Does anybody know what the connection is between Wallis' formula for ##\pi## and quantum mechanics? There was an article about it:
https://www.eurekalert.org/pub_releases/2015-11/aiop-ndo110915.php
but like all articles for the lay public, all the details were left out.

Wallis' formula is:

##\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} ...##

I've always thought there should be a geometric proof of this, say approximating a semicircle by rectangles of some sort, but the proofs I've seen are analytic.
 
Mathematics news on Phys.org
3Blue1Brown has a video about a geometric proof of the Wallis product:
 
  • Like
Likes   Reactions: stevendaryl and DrClaude
3blue1brown rocks. Not sure about dropping the 0 though. Didn't get all the way through.

A while back (didn't finish it yet), I started working on a zeta/log chart, with a few switching formulas between them (and I was thinking about using it as a quantization structure for some art). The Wallis Product pops up (a few thingies down):

Since, log(\frac{x}{y}) =\sum\limits_{n=1}^{\infty} \, (\frac{x-y}{x})^n \cdot \frac{1}{n}, if you set y=x-1...

<br /> \begin{array}{|c|c|c|c|}<br /> \hline &amp; \frac{\zeta(1)}{1} &amp; \frac{\zeta(2)}{2}&amp; \frac{\zeta(3)}{3}&amp; \frac{\zeta(4)}{4} &amp; \frac{\zeta(5)}{5}&amp;\dots\\<br /> \hline \lim\limits_{x\to 1^+} log(\frac{x}{x-1}) &amp; \frac{1}{1 \cdot 1^1} &amp; \frac{1}{2 \cdot 1^2} &amp; \frac{1}{3 \cdot 1^3}&amp; \frac{1}{4 \cdot 1^4}&amp; \frac{1}{5 \cdot 1^5}&amp;\dots\\<br /> \hline log (\frac{2}{1}) &amp; \frac{1}{1 \cdot 2^1} &amp; \frac{1}{2 \cdot 2^2} &amp; \frac{1}{3 \cdot 2^3}&amp; \frac{1}{4 \cdot 2^4}&amp; \frac{1}{5 \cdot 2^5}&amp;\dots\\<br /> \hline log (\frac{3}{2}) &amp; \frac{1}{1 \cdot 3^1} &amp; \frac{1}{2 \cdot 3 ^2} &amp; \frac{1}{3 \cdot 3^3}&amp; \frac{1}{4 \cdot 3^4}&amp; \frac{1}{5 \cdot 3^5} &amp;\dots\\<br /> \hline log (\frac{4}{3}) &amp; \frac{1}{1 \cdot 4^1} &amp; \frac{1}{2 \cdot 4^2} &amp; \frac{1}{3 \cdot 4^3}&amp; \frac{1}{4 \cdot 4^4}&amp; \frac{1}{5 \cdot 4^5} &amp;\dots\\<br /> \hline log (\frac{5}{4}) &amp; \frac{1}{1 \cdot 5^1} &amp; \frac{1}{2 \cdot 5^2} &amp; \frac{1}{3 \cdot 5^3}&amp; \frac{1}{4 \cdot 5^4}&amp; \frac{1}{5 \cdot 5^5} &amp;\dots\\<br /> \hline \dots &amp;\dots &amp; \dots&amp;\dots &amp;\dots&amp;\dots&amp;\dots\\<br /> \hline<br /> \end{array}<br />

A couple of functions for smooth movement between quantized log and zetas:
Log shift function, with x ? N a ? R : [0,1].. note that it's 2a/ 2n, so I drop the 2:

log (\frac{x}{x-1}) \to log(\frac{x+1}{x}) \,= \, f(x,a) =\, \sum\limits_{n=1}^\infty \frac{1}{n\cdot x^n} - \frac{a}{n \cdot x^{2n}}

Shift logs by a=1:

<br /> \begin{array}{|c|c|c|c|}<br /> \hline &amp; \frac{\zeta(1)}{1} &amp; -\frac{\zeta(2)}{2}&amp; \frac{\zeta(3)}{3}&amp; -\frac{\zeta(4)}{4} &amp; \frac{\zeta(5)}{5}&amp;\dots\\<br /> \hline log(\frac{2}{1}) &amp; \frac{1}{1 \cdot 1^1} &amp; -\frac{1}{2 \cdot 1^2} &amp; \frac{1}{3 \cdot 1^3}&amp; -\frac{1}{4 \cdot 1^4}&amp; \frac{1}{5 \cdot 1^5}&amp;\dots\\<br /> \hline log (\frac{3}{2}) &amp; \frac{1}{1 \cdot 2^1} &amp; -\frac{1}{2 \cdot 2^2} &amp; \frac{1}{3 \cdot 2^3}&amp; -\frac{1}{4 \cdot 2^4}&amp; \frac{1}{5 \cdot 2^5}&amp;\dots\\<br /> \hline log (\frac{4}{3}) &amp; \frac{1}{1 \cdot 3^1} &amp;- \frac{1}{2 \cdot 3 ^2} &amp; \frac{1}{3 \cdot 3^3}&amp; -\frac{1}{4 \cdot 3^4}&amp; \frac{1}{5 \cdot 3^5} &amp;\dots\\<br /> \hline log (\frac{5}{4}) &amp; \frac{1}{1 \cdot 4^1} &amp; -\frac{1}{2 \cdot 4^2} &amp; \frac{1}{3 \cdot 4^3}&amp; -\frac{1}{4 \cdot 4^4}&amp; \frac{1}{5 \cdot 4^5} &amp;\dots\\<br /> \hline log (\frac{6}{5}) &amp; \frac{1}{1 \cdot 5^1} &amp; -\frac{1}{2 \cdot 5^2} &amp; \frac{1}{3 \cdot 5^3}&amp; -\frac{1}{4 \cdot 5^4}&amp; \frac{1}{5 \cdot 5^5} &amp;\dots\\<br /> \hline \dots &amp;\dots &amp; \dots&amp;\dots &amp;\dots&amp;\dots&amp;\dots\\<br /> \hline<br /> \end{array}<br />

zeta to eta shift function, s ?N, a ? R: [0,1], dropped the 2 from 2a/2n again!:

\frac{\zeta(s)}{s} \to \frac{\eta(s)}{s} \, = g(s,a) = \, \sum\limits_{n=1}^\infty \frac{1}{s \cdot n ^ s} - \frac{a}{s \cdot (2n)^ s}

Gets you here:
<br /> \begin{array}{|c|c|c|c|}<br /> \hline &amp; \frac{\eta(1)}{1} &amp; -\frac{\eta(2)}{2}&amp; \frac{\eta(3)}{3}&amp; -\frac{\eta(4)}{4} &amp; \frac{\eta(5)}{5}&amp;\dots\\<br /> \hline log(\frac{2}{1}) &amp; \frac{1}{1 \cdot 1^1} &amp; -\frac{1}{2 \cdot 1^2} &amp; \frac{1}{3 \cdot 1^3}&amp; -\frac{1}{4 \cdot 1^4}&amp; \frac{1}{5 \cdot 1^5}&amp;\dots\\<br /> \hline - log (\frac{3}{2}) &amp; -\frac{1}{1 \cdot 2^1} &amp; \frac{1}{2 \cdot 2^2} &amp;- \frac{1}{3 \cdot 2^3}&amp; \frac{1}{4 \cdot 2^4}&amp; -\frac{1}{5 \cdot 2^5}&amp;\dots\\<br /> \hline log (\frac{4}{3}) &amp; \frac{1}{1 \cdot 3^1} &amp;- \frac{1}{2 \cdot 3 ^2} &amp; \frac{1}{3 \cdot 3^3}&amp; -\frac{1}{4 \cdot 3^4}&amp; \frac{1}{5 \cdot 3^5} &amp;\dots\\<br /> \hline -log (\frac{5}{4}) &amp;- \frac{1}{1 \cdot 4^1} &amp; \frac{1}{2 \cdot 4^2} &amp;- \frac{1}{3 \cdot 4^3}&amp; \frac{1}{4 \cdot 4^4}&amp; -\frac{1}{5 \cdot 4^5} &amp;\dots\\<br /> \hline log (\frac{6}{5}) &amp; \frac{1}{1 \cdot 5^1} &amp; -\frac{1}{2 \cdot 5^2} &amp; \frac{1}{3 \cdot 5^3}&amp; -\frac{1}{4 \cdot 5^4}&amp; \frac{1}{5 \cdot 5^5} &amp;\dots\\<br /> \hline \dots &amp;\dots &amp; \dots&amp;\dots &amp;\dots&amp;\dots&amp;\dots\\<br /> \hline<br /> \end{array}<br />

log(\frac{2}{1}) -log (\frac{3}{2}) + log (\frac{4}{3}) -log (\frac{5}{4}) +... \, = \,log(\frac{2}{1}) + log (\frac{2}{3}) + log (\frac{4}{3}) +log (\frac{4}{5}) +log (\frac{6}{5}) +...

From the above, from the Wallis product for pi:
\sum\limits_{n=1}^\infty \,-1^{n+1} \, \cdot \frac{\eta{(n)}}{n} \, = \, log(\frac{\pi}{2}) I kept on going, because I thought that perhaps I could make a quantized framework for some art- connections between adjacent points in space would be mapped x to zeta, y to log, z to zeta/eta depth (determined by 1-2^{1-s})... not finished, because I have to do real work too.

When we do a zeta to eta conversion, we lose log(2), and are adding different logs together to get log (pi/4):

<br /> \begin{array}{|c|c|c|c|}<br /> \hline &amp; 0\cdot \frac{ \zeta(1)}{1} &amp; - \frac{1}{2} \cdot \frac{\zeta(2)}{2} &amp; \frac{3}{4} \cdot \frac{\zeta(3)}{3} &amp; -\frac{7}{8} \cdot \frac {\zeta(4)}{4} &amp; \frac{15}{16} \cdot \frac{\zeta(5)}{5} &amp; \dots\\<br /> \hline -log(\frac{9}{8}) &amp; 0\cdot\frac{1}{1 \cdot 1^1} &amp; - \frac{1}{2} \cdot\frac{1}{2 \cdot 1^2} &amp;\frac{3}{4} \cdot \frac{1}{3 \cdot 1^3}&amp; -\frac{7}{8} \cdot \frac{1}{4 \cdot 1^4}&amp;\frac{15}{16} \cdot \frac{1}{5 \cdot 1^5}&amp;\dots\\<br /> \hline -log (\frac{5^2}{24}) &amp; 0\cdot\frac{1}{1 \cdot 2^1} &amp; - \frac{1}{2} \cdot\frac{1}{2 \cdot 2^2} &amp;\frac{3}{4} \cdot \frac{1}{3 \cdot 2^3}&amp;-\frac{7}{8} \cdot \frac{1}{4 \cdot 2^4}&amp; \frac{15}{16} \cdot \frac{1}{5 \cdot 2^5}&amp;\dots\\<br /> \hline -log (\frac{7^2}{48}) &amp;0\cdot \frac{1}{1 \cdot 3^1} &amp;- \frac{1}{2} \cdot\frac{1}{2 \cdot 3 ^2} &amp;\frac{3}{4} \cdot \frac{1}{3 \cdot 3^3}&amp; -\frac{7}{8} \cdot \frac{1}{4 \cdot 3^4}&amp; \frac{15}{16} \cdot \frac{1}{5 \cdot 3^5} &amp;\dots\\<br /> \hline -log (\frac{9^2}{80}) &amp;0\cdot \frac{1}{1 \cdot 4^1} &amp;- \frac{1}{2} \cdot \frac{1}{2 \cdot 4^2} &amp;\frac{3}{4} \cdot \frac{1}{3 \cdot 4^3}&amp;-\frac{7}{8} \cdot \frac{1}{4 \cdot 4^4}&amp; \frac{15}{16} \cdot \frac{1}{5 \cdot 4^5} &amp;\dots\\<br /> \hline- log (\frac{11^2}{120}) &amp;0\cdot \frac{1}{1 \cdot 5^1} &amp; - \frac{1}{2} \cdot\frac{1}{2 \cdot 5^2} &amp;\frac{3}{4} \cdot \frac{1}{3 \cdot 5^3}&amp; -\frac{7}{8} \cdot \frac{1}{4 \cdot 5^4}&amp; \frac{15}{16} \cdot \frac{1}{5 \cdot 5^5} &amp;\dots\\<br /> \hline \dots &amp;\dots &amp; \dots&amp;\dots &amp;\dots&amp;\dots&amp;\dots\\<br /> \hline<br /> \end{array}<br />

I got to the point where subsequent zeta/eta conversions add depth, have log charts, etc. so they can be stacked. It's written on paper though... and needs to be completed. But I ended up working on something else because this computer was a gift from Keith Anderson in the fractal entertainment industry (Fractaled Visions), so I feel like I should work on fractals. A bit.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 84 ·
3
Replies
84
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K