MHB Weak Convergence to Normal Distribution

Click For Summary
The discussion revolves around proving that the expression (1/√n)(∑X_n - n/2) converges weakly to a normal distribution as n approaches infinity. Participants clarify the notation, suggesting that the summation index should be corrected for clarity. They agree that the problem likely stems from the Central Limit Theorem, which indicates that the normalized sum of independent random variables converges to a normal distribution. The expected mean of the random variables X_n approaches 1/2, supporting the connection to the Central Limit Theorem. Overall, the consensus is that the problem can be addressed using principles from probability theory.
joypav
Messages
149
Reaction score
0
Problem:
Let $X_n$ be independent random variables such that $X_1 = 1$, and for $n \geq 2$,

$P(X_n=n)=n^{-2}$ and $P(X_n=1)=P(X_n=0)=\frac{1}{2}(1-n^{-2})$.

Show $(1/\sqrt{n})(\sum_{m=1}^{n}X_n-n/2)$ converges weakly to a normal distribution as $n \rightarrow \infty$.Thoughts:

My professor sent this problem over email and I am first off wondering about the notation. I think that the last line is meant to read $(\frac{1}{\sqrt{n}})(\frac{\sum_{m=1}^{n}X_m-n}{2})$? (I assume the summation index was simply a typo and that it is all over 2 not just the n?)

If that is the case, then I am thinking this is a consequence of the Central Limit Theorem.
Which has conclusion,

$\frac{S_n - \mu n}{\sigma \sqrt{n}} \implies \chi$

where $\chi$ is $N(0,1)$.
 
Physics news on Phys.org
joypav said:
Problem:
Let $X_n$ be independent random variables such that $X_1 = 1$, and for $n \geq 2$,

$P(X_n=n)=n^{-2}$ and $P(X_n=1)=P(X_n=0)=\frac{1}{2}(1-n^{-2})$.

Show $(1/\sqrt{n})(\sum_{m=1}^{n}X_n-n/2)$ converges weakly to a normal distribution as $n \rightarrow \infty$.Thoughts:

My professor sent this problem over email and I am first off wondering about the notation. I think that the last line is meant to read $(\frac{1}{\sqrt{n}})(\frac{\sum_{m=1}^{n}X_m-n}{2})$? (I assume the summation index was simply a typo and that it is all over 2 not just the n?)

If that is the case, then I am thinking this is a consequence of the Central Limit Theorem.
Which has conclusion,

$\frac{S_n - \mu n}{\sigma \sqrt{n}} \implies \chi$

where $\chi$ is $N(0,1)$.
I am not a probabilist, but I think that your formula should read $\frac{1}{\sqrt{n}} \Bigl(\left(\sum_{m=1}^{n} X_m\right)- \frac{n}{2}\Bigr)$.

If $m$ is large, then $X_m$ takes each of the values $0$ and $1$ with a probability close to $\frac12$ (and the large value $m$ with a very small probability $m^{-2}$). So the mean value of $X_m$ will be close to $\frac12$, and the mean value of $S_n = \sum_{m=1}^{n} X_m$ will be close to $\frac n2$. This seems to make it plausible that your formula should somehow relate to the central limit theorem.
 
Last edited:
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...