# Webassign - Dropping a Package From a Helicopter

• berenmacbowma
But if you don't think the upward motion is important, then you can just disregard it and only focus on the downward motion. So the answer would be the time it takes for the package to fall from 160m to the ground, which can be calculated using the kinematic equations and taking into account the acceleration due to gravity.

#### berenmacbowma

Q: A helicopter is ascending vertically with a speed of 2.00 m/s. At a height of 160 m above the Earth, a package is dropped from a window. How much time does it take for the package to reach the ground?

Attempt:
[how long it takes to reach the height]
v=delta d/time
2=160/time
2(time)=160
time=80 seconds

[how long it takes to fall]
v=delta d/time
9.8=160/time
9.8(time)=160
time=16.326

80+16.326

96.3 s (which is wrong.)

berenmacbowma said:
Attempt:
[how long it takes to reach the height]
v=delta d/time
2=160/time
2(time)=160
time=80 seconds
The time it takes for the helicopter to reach the given height is irrelevant. They just want the time it takes for the package to fall to the ground, starting from the moment it is dropped.

[how long it takes to fall]
v=delta d/time
9.8=160/time
9.8(time)=160
time=16.326
9.8 m/s^2 is the acceleration of the falling package, not the speed.

How can you express the position of the package as a function of time? It is uniformly accelerated motion. (You'll need to review your kinematic equations. Here's a list: Basic Equations of 1-D Kinematics)

berenmacbowma said:
Q: A helicopter is ascending vertically with a speed of 2.00 m/s. At a height of 160 m above the Earth, a package is dropped from a window. How much time does it take for the package to reach the ground?

Attempt:
[how long it takes to reach the height]
v=delta d/time
2=160/time
2(time)=160
time=80 seconds

Read the question again. When the package is released at 160m it is traveling upwards at same speed as the helicopter. It will carry on upwards for a bit. You need to work out how much higher it goes and add that to the 160m. Also calculate the time that phase takes.

Hint: Use one of the equations of motion to account the deceleration due to gravity.

[how long it takes to fall]
v=delta d/time
9.8=160/time
9.8(time)=160
time=16.326

80+16.326

96.3 s (which is wrong.)

Having worked out the height it reaches in part one you can then work out how long it takes to fall.

Then add the time for each phase together.

Hint: use one of the equations of motion to take into account the acceleration due to gravity.

the upward motion the package will have will be rather insignificant because the 2m/s speed isn't fast enough to make a difference in the problem, keep in mind this is a basic physics homework, the person that made the exercise wasn't probably thinking of the upward motion, since this is probably a high school exercise.