The expression inside the absolute value bars on the left is negative when $1 \leq x < 5$ and nonnegative for $x\geq5.$ Similarly, the expression inside the second set of absolute value bars is negative when $1 \leq x < 10$ and nonnegative for $x\geq10.$ This gives us three cases to consider.
If $1\leq x\leq 5,$ we have
\begin{align*}
\left|\sqrt{x - 1} - 2\right| + \left|\sqrt{x - 1} - 3\right| = 1
&\Leftrightarrow -\left(\sqrt{x - 1} - 2\right) - \left(\sqrt{x - 1} - 3\right) = 1\\
&\Leftrightarrow -2\sqrt{x-1} + 5 = 1\\
&\Leftrightarrow \sqrt{x - 1} = 2\\
&\Leftrightarrow x = 5,
\end{align*}
and so $5$ is the only solution in this first interval.
If $5\leq x\leq10,$ we have
\begin{align*}
\left|\sqrt{x - 1} - 2\right| + \left|\sqrt{x - 1} - 3\right| = 1
&\Leftrightarrow \left(\sqrt{x - 1} - 2\right) - \left(\sqrt{x - 1} - 3\right) = 1\\
&\Leftrightarrow 1 = 1
\end{align*}
so the equation is true for all $x$ in this interval.
Finally, if $x\geq10,$ we have
\begin{align*}
\left|\sqrt{x - 1} - 2\right| + \left|\sqrt{x - 1} - 3\right| = 1
&\Leftrightarrow \left(\sqrt{x - 1} - 2\right) + \left(\sqrt{x - 1} - 3\right) = 1\\
&\Leftrightarrow 2\sqrt{x-1} - 5 = 1\\
&\Leftrightarrow \sqrt{x - 1} = 3\\
&\Leftrightarrow x = 10.
\end{align*}
Therefore, the original equation is satisfied for all $x$ in the interval $[5, 10],$ and there are no solutions outside this interval.