I'm trying to expand the following using Newton's Generalized Binomial Theorem.(adsbygoogle = window.adsbygoogle || []).push({});

$$[f_1(x)+f_2(x)]^\delta = (f_1(x))^\delta + \delta (f_1(x))^{\delta-1}f_2(x) + \frac{\delta(\delta-1)}{2!}(f_1(x))^{\delta-2}(f_2(x))^2 + ...$$

where $$0<\delta<<1$$

But the condition for this formula is that $$\lvert f_1(x)\rvert > \lvert f_2(x)\rvert$$

And that's where my problem is. Since both functions are sinusoidal, there are times when indeed $$\lvert f_1(x)\rvert > \lvert f_2(x)\rvert$$ but there are also values of x such that $$\lvert f_2(x)\rvert > \lvert f_1(x)\rvert$$. Take for example the graphs of cos^2 x and sin^2x.

In other words, since the condition is violated, the expansion is not true for all x.

I'm thinking of separating the two instances. At x's where $$\lvert f_1(x)\rvert > \lvert f_2(x)\rvert$$ then I can use the above expansion. If $$\lvert f_2(x)\rvert > \lvert f_1(x)\rvert$$, then:

$$[f_2(x)+f_1(x)]^\delta = (f_2(x))^\delta + \delta (f_2(x))^{\delta-1}f_1(x) + \frac{\delta(\delta-1)}{2!}(f_2(x))^{\delta-2}(f_1(x))^2 + ...$$

But, how can I separate the two instances? Or is there another way to solve this problem?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Newton's Generalized Binomial Theorem

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**