Weird Semidirect Product Formula

  • Context: Undergrad 
  • Thread starter Thread starter jstrunk
  • Start date Start date
  • Tags Tags
    Formula Product Weird
Click For Summary

Discussion Overview

The discussion revolves around a specific formula for the semidirect product of groups ##\mathbb{Z}_p## and ##\mathbb{Z}_q##, particularly when p and q are primes with p dividing (q-1). Participants explore the implications of the formula, its components, and the conditions under which it operates, while seeking clarification and examples.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses confusion over the formula ##(a,b)*(x,y)=(a+_q c^bx,b+_py)## and the role of the element c, noting a lack of clarity in the book's explanation.
  • Another participant suggests that the notation ##c^b(x)## could represent conjugation, but argues that since both groups are Abelian, the semidirect product may reduce to a direct product.
  • A third participant elaborates on the properties of c, stating that it is the smallest element in ##\mathbb{Z}^{*}_{q}## with order p, and discusses the implications of this choice for the formula.
  • Concerns are raised about the validity of the inverse formula ##(a,b)^{-1}=(-c^{-b}a,b)##, with one participant questioning the correctness of the operations involved, particularly in the second term.
  • Another participant emphasizes the importance of the condition ##p|(q-1)## and explains how it affects the choice of c and the structure of the operation defined by the formula.
  • There is a suggestion that the operation defined by the formula may not obviously satisfy group properties, indicating a need for further verification.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation and validity of the formula or the properties of the operation it defines. Multiple competing views and uncertainties remain regarding the nature of the semidirect product in this context.

Contextual Notes

Participants note potential limitations in the book's explanations, including missing assumptions and unclear definitions of operations. The discussion highlights the need for verification of the properties of the defined operation and the correctness of the inverse formula.

jstrunk
Messages
55
Reaction score
3
TL;DR
I can't understand how to use the weird formula in my book
My book gives this formula for the semidirect product for groups ##Z_p## and ## Z_q## for primes p<q and p divides (q-1).
##(a,b)*(x,y)=(a+_q c^bx,b+_py)##
There is also an explanation of what c is but very little else.
It doesn't even explain what operation adjacency represents, eq., ##c^bx##.
Then I am asked to prove that ##(a,b)^-1=(-c^{-b}a,b)##.
I wasn't able to solve it based on the skimpy material in the book.
I searched all over the internet and there is nothing about this formula.
Semidirect products are always defined in a totally different way.
Can anyone point to some examples of using this formula?
It probably won't do any good to explain the theory to me.
I work better the other way around.
When I understand how to do it, then I can understand the theory.
 
Physics news on Phys.org
The natural guess is that it stands for conjugation: ##c^b(x)=b^{-1}xb## in general, or ##c^b(x)=-b+x+b## in this case. But since ##\mathbb{Z}_p,\mathbb{Z}_q## are both Abelian groups, every semidirect product is automatically direct, because the conjugation ##c## reduces to the identity map: ##c^b(x)=-b+x+b=x.##
 
Here is what the book says about c.
Let 1<c<q be minimal in ##Z^{*}_{q}## with o(c)=p. Observe that since o(c)=p we have ##c^p=1 \in Z^{*}_{q}##
and it follows that ##c^k=c^{kmodp} \in Z^{*}_{q}##.

The formula doesn't even make sense in the second term, which doesn't involve c.
I am asked to verify that ##(a,b)^{-1}=(-c^{-b}a,b)## applying the formula ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##.
The identity is (0,0) so I need to show that ##(a,b)*(-c^{-b}a,b)=(0,0)## and ##(-c^{-b}a,b)*(a,b)=(0,0)##.
For the second term, that means ##b+_pb=0## for all primes p and ##b \in Z_p##.
That doesn't make sense. ##b+_p{-b}=0## would make more sense.
Maybe there is a typo in the book?
I was hoping someone would recognize these formulas and be able to point me to a better explanation or examples.
 
The crucial condition is that ##p|(q-1)##. This means ##q-1=a\cdot p## or ##q=ap+1##. We have for all elements ##x\in \{1,\ldots,q-1\}=\mathbb{Z}_q^*## that ##(x^a)^p=x^{ap}=x^{q-1}=1## because for every group ##G## we have ##x^{|G|}=1.## Thus we can choose ##c## as the smallest among those whose order is exactly ##p##, i.e. the minimum of all ##x^a##. And ##c^p=1 \in \mathbb{Z}^*_q.##

Next let ##k=-a\cdot p + r## with ##0\leq r < p##. Then ##c^r=c^{k+ap}=c^k\cdot c^{ap}=c^k\cdot (c^p)^a=c^k,## which means ##c^k=c^r=c^{k \mod p}## and of course it is still an element of ##\mathbb{Z}_q^*##.

The problem reads as is in this case: ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##

##*## defines a binary operation. Whether this is a group operation isn't obvious here.
##+_p## and ##+_q## denote the addition in resp. ##\mathbb{Z}_p, \mathbb{Z}_q##
##c^b## is the multiplication in ##\mathbb{Z}^*_q##: ##\underbrace{c\cdot c\cdot \ldots\cdot c}_{b\text{ times}}##
Since ##Z_q^*\subseteq \mathbb{Z_q}## as a set, we can define ##c^b\cdot x## as multiplication in ##\mathbb{Z}_q^*## if ##q\nmid x## and ##c^bx=0## if ##q|x##.

So finally we have a well-defined binary operation ##*## on the ##\mathbb{Z}_q \times \mathbb{Z}_p##. Which properties this operation has isn't obvious. You will have to check.
 

Similar threads

Replies
48
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K