I Weird Semidirect Product Formula

jstrunk
Messages
53
Reaction score
2
TL;DR Summary
I can't understand how to use the weird formula in my book
My book gives this formula for the semidirect product for groups ##Z_p## and ## Z_q## for primes p<q and p divides (q-1).
##(a,b)*(x,y)=(a+_q c^bx,b+_py)##
There is also an explanation of what c is but very little else.
It doesn't even explain what operation adjacency represents, eq., ##c^bx##.
Then I am asked to prove that ##(a,b)^-1=(-c^{-b}a,b)##.
I wasn't able to solve it based on the skimpy material in the book.
I searched all over the internet and there is nothing about this formula.
Semidirect products are always defined in a totally different way.
Can anyone point to some examples of using this formula?
It probably won't do any good to explain the theory to me.
I work better the other way around.
When I understand how to do it, then I can understand the theory.
 
Physics news on Phys.org
The natural guess is that it stands for conjugation: ##c^b(x)=b^{-1}xb## in general, or ##c^b(x)=-b+x+b## in this case. But since ##\mathbb{Z}_p,\mathbb{Z}_q## are both Abelian groups, every semidirect product is automatically direct, because the conjugation ##c## reduces to the identity map: ##c^b(x)=-b+x+b=x.##
 
Here is what the book says about c.
Let 1<c<q be minimal in ##Z^{*}_{q}## with o(c)=p. Observe that since o(c)=p we have ##c^p=1 \in Z^{*}_{q}##
and it follows that ##c^k=c^{kmodp} \in Z^{*}_{q}##.

The formula doesn't even make sense in the second term, which doesn't involve c.
I am asked to verify that ##(a,b)^{-1}=(-c^{-b}a,b)## applying the formula ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##.
The identity is (0,0) so I need to show that ##(a,b)*(-c^{-b}a,b)=(0,0)## and ##(-c^{-b}a,b)*(a,b)=(0,0)##.
For the second term, that means ##b+_pb=0## for all primes p and ##b \in Z_p##.
That doesn't make sense. ##b+_p{-b}=0## would make more sense.
Maybe there is a typo in the book?
I was hoping someone would recognize these formulas and be able to point me to a better explanation or examples.
 
The crucial condition is that ##p|(q-1)##. This means ##q-1=a\cdot p## or ##q=ap+1##. We have for all elements ##x\in \{1,\ldots,q-1\}=\mathbb{Z}_q^*## that ##(x^a)^p=x^{ap}=x^{q-1}=1## because for every group ##G## we have ##x^{|G|}=1.## Thus we can choose ##c## as the smallest among those whose order is exactly ##p##, i.e. the minimum of all ##x^a##. And ##c^p=1 \in \mathbb{Z}^*_q.##

Next let ##k=-a\cdot p + r## with ##0\leq r < p##. Then ##c^r=c^{k+ap}=c^k\cdot c^{ap}=c^k\cdot (c^p)^a=c^k,## which means ##c^k=c^r=c^{k \mod p}## and of course it is still an element of ##\mathbb{Z}_q^*##.

The problem reads as is in this case: ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##

##*## defines a binary operation. Whether this is a group operation isn't obvious here.
##+_p## and ##+_q## denote the addition in resp. ##\mathbb{Z}_p, \mathbb{Z}_q##
##c^b## is the multiplication in ##\mathbb{Z}^*_q##: ##\underbrace{c\cdot c\cdot \ldots\cdot c}_{b\text{ times}}##
Since ##Z_q^*\subseteq \mathbb{Z_q}## as a set, we can define ##c^b\cdot x## as multiplication in ##\mathbb{Z}_q^*## if ##q\nmid x## and ##c^bx=0## if ##q|x##.

So finally we have a well-defined binary operation ##*## on the ##\mathbb{Z}_q \times \mathbb{Z}_p##. Which properties this operation has isn't obvious. You will have to check.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top