Undergrad Weird Semidirect Product Formula

Click For Summary
SUMMARY

The forum discussion centers around the semidirect product formula for groups ##\mathbb{Z}_p## and ##\mathbb{Z}_q##, where p and q are primes with p dividing (q-1). The formula presented is ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##, but lacks sufficient explanation, particularly regarding the operation adjacency and the role of c. Users express confusion over proving the inverse ##(a,b)^{-1}=(-c^{-b}a,b)## and question the validity of the formula, suggesting potential typographical errors in the source material. The discussion emphasizes the need for clearer examples and explanations regarding the properties of this binary operation.

PREREQUISITES
  • Understanding of group theory, specifically semidirect products.
  • Familiarity with modular arithmetic in the context of prime groups.
  • Knowledge of group operations and their properties.
  • Basic concepts of Abelian groups and their characteristics.
NEXT STEPS
  • Research the properties of semidirect products in group theory.
  • Study examples of semidirect products involving groups like ##\mathbb{Z}_p## and ##\mathbb{Z}_q##.
  • Explore the concept of group inverses and how they are derived in semidirect products.
  • Investigate the role of the element c in the context of group operations and its implications.
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone studying group theory, particularly those interested in semidirect products and their applications in algebraic structures.

jstrunk
Messages
53
Reaction score
2
TL;DR
I can't understand how to use the weird formula in my book
My book gives this formula for the semidirect product for groups ##Z_p## and ## Z_q## for primes p<q and p divides (q-1).
##(a,b)*(x,y)=(a+_q c^bx,b+_py)##
There is also an explanation of what c is but very little else.
It doesn't even explain what operation adjacency represents, eq., ##c^bx##.
Then I am asked to prove that ##(a,b)^-1=(-c^{-b}a,b)##.
I wasn't able to solve it based on the skimpy material in the book.
I searched all over the internet and there is nothing about this formula.
Semidirect products are always defined in a totally different way.
Can anyone point to some examples of using this formula?
It probably won't do any good to explain the theory to me.
I work better the other way around.
When I understand how to do it, then I can understand the theory.
 
Physics news on Phys.org
The natural guess is that it stands for conjugation: ##c^b(x)=b^{-1}xb## in general, or ##c^b(x)=-b+x+b## in this case. But since ##\mathbb{Z}_p,\mathbb{Z}_q## are both Abelian groups, every semidirect product is automatically direct, because the conjugation ##c## reduces to the identity map: ##c^b(x)=-b+x+b=x.##
 
Here is what the book says about c.
Let 1<c<q be minimal in ##Z^{*}_{q}## with o(c)=p. Observe that since o(c)=p we have ##c^p=1 \in Z^{*}_{q}##
and it follows that ##c^k=c^{kmodp} \in Z^{*}_{q}##.

The formula doesn't even make sense in the second term, which doesn't involve c.
I am asked to verify that ##(a,b)^{-1}=(-c^{-b}a,b)## applying the formula ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##.
The identity is (0,0) so I need to show that ##(a,b)*(-c^{-b}a,b)=(0,0)## and ##(-c^{-b}a,b)*(a,b)=(0,0)##.
For the second term, that means ##b+_pb=0## for all primes p and ##b \in Z_p##.
That doesn't make sense. ##b+_p{-b}=0## would make more sense.
Maybe there is a typo in the book?
I was hoping someone would recognize these formulas and be able to point me to a better explanation or examples.
 
The crucial condition is that ##p|(q-1)##. This means ##q-1=a\cdot p## or ##q=ap+1##. We have for all elements ##x\in \{1,\ldots,q-1\}=\mathbb{Z}_q^*## that ##(x^a)^p=x^{ap}=x^{q-1}=1## because for every group ##G## we have ##x^{|G|}=1.## Thus we can choose ##c## as the smallest among those whose order is exactly ##p##, i.e. the minimum of all ##x^a##. And ##c^p=1 \in \mathbb{Z}^*_q.##

Next let ##k=-a\cdot p + r## with ##0\leq r < p##. Then ##c^r=c^{k+ap}=c^k\cdot c^{ap}=c^k\cdot (c^p)^a=c^k,## which means ##c^k=c^r=c^{k \mod p}## and of course it is still an element of ##\mathbb{Z}_q^*##.

The problem reads as is in this case: ##(a,b)*(x,y)=(a+_q c^bx,b+_py)##

##*## defines a binary operation. Whether this is a group operation isn't obvious here.
##+_p## and ##+_q## denote the addition in resp. ##\mathbb{Z}_p, \mathbb{Z}_q##
##c^b## is the multiplication in ##\mathbb{Z}^*_q##: ##\underbrace{c\cdot c\cdot \ldots\cdot c}_{b\text{ times}}##
Since ##Z_q^*\subseteq \mathbb{Z_q}## as a set, we can define ##c^b\cdot x## as multiplication in ##\mathbb{Z}_q^*## if ##q\nmid x## and ##c^bx=0## if ##q|x##.

So finally we have a well-defined binary operation ##*## on the ##\mathbb{Z}_q \times \mathbb{Z}_p##. Which properties this operation has isn't obvious. You will have to check.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K