Weyl transformation of connection and curvature tensors

Click For Summary

Discussion Overview

The discussion revolves around the Weyl transformation of the metric and its implications for the connection and curvature tensors, specifically focusing on the derivation of the Ricci tensor from the transformed connection. Participants explore the mathematical expressions involved and seek to identify potential errors in the derivation process.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents the Weyl transformation of the metric and derives the corresponding connection and Ricci tensor, providing detailed mathematical expressions.
  • Another participant suggests that the Christoffel symbols do not properly account for the transformation of the inverse metric, indicating a potential source of error in the derivation.
  • A subsequent reply asserts that the original poster does account for the transformation of the inverse metric and provides a detailed breakdown of their reasoning, questioning the validity of the critique.
  • Further clarification is sought regarding the derivatives of the Christoffel symbols and their contributions to the Riemann and Ricci tensors.
  • Another participant agrees with the original poster's approach in exponential form, noting that certain factors from the Christoffel symbols cancel out, but expresses uncertainty about the specific error in the derivation.

Areas of Agreement / Disagreement

Participants express differing views on the correctness of the derivation of the connection and Ricci tensor under the Weyl transformation. There is no consensus on where the original poster may have gone wrong, as some participants support their approach while others challenge it.

Contextual Notes

Participants reference external sources, such as Wikipedia and a textbook, to support their claims and clarify the transformations involved. The discussion includes complex mathematical expressions that may depend on specific assumptions about the metric and its transformations.

Rabindranath
Messages
10
Reaction score
1
Given a Weyl transformation of the metric ##g_{\mu\nu} \rightarrow g'_{\mu\nu} = e^{\Omega(x)} g_{\mu\nu}##, I'm trying to find the corresponding connection ##\Gamma'^{\lambda}_{\mu\nu}##, and from that ##-## via the Riemann tensor ##R'^{\lambda}_{\mu\nu\kappa}## ##-## the Ricci tensor ##R'_{\mu\kappa}##. For the connection, I end up with
$$\Gamma'^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} + \frac{1}{2}\{\delta^\lambda_\nu \partial_\mu\Omega + \delta^\lambda_\mu \partial_\nu\Omega - g^{\sigma\lambda}g_{\nu\mu}\partial_\sigma\Omega \}$$
The Riemann tensor is then defined in terms of the connection as
$$R'^{\lambda}_{\mu\nu\kappa} = \partial_\kappa\Gamma'^{\lambda}_{\mu\nu} - \partial_\nu\Gamma'^{\lambda}_{\mu\kappa} + \Gamma'^{\rho}_{\mu\nu} \Gamma'^{\lambda}_{\kappa\rho} - \Gamma'^{\sigma}_{\mu\kappa} \Gamma'^{\lambda}_{\nu\sigma}$$
which gives us the Ricci tensor as
$$R'_{\mu\kappa} = R'^{\lambda}_{\mu\lambda\kappa} = \partial_\kappa\Gamma'^{\lambda}_{\mu\lambda} - \partial_\lambda\Gamma'^{\lambda}_{\mu\kappa} + \Gamma'^{\rho}_{\mu\lambda} \Gamma'^{\lambda}_{\kappa\rho} - \Gamma'^{\sigma}_{\mu\kappa} \Gamma'^{\lambda}_{\lambda\sigma}$$
which is reasonable to study term by term. For the first term, we get
$$\partial_\kappa\Gamma'^{\lambda}_{\mu\lambda} = \partial_\kappa\Gamma^{\lambda}_{\mu\lambda} + \frac{1}{2}\{\delta^\lambda_\lambda \partial_\kappa\partial_\mu\Omega + \delta^\lambda_\mu \partial_\kappa\partial_\lambda\Omega - g^{\sigma\lambda}g_{\lambda\mu}\partial_\kappa\partial_\sigma\Omega \} = \partial_\kappa\Gamma^{\lambda}_{\mu\lambda} + \frac{1}{2} D \partial_\kappa\partial_\mu\Omega$$
where ##D = \delta^\lambda_\lambda## is the dimensionality. For the second term of the Ricci tensor, we get
$$\partial_\lambda\Gamma'^{\lambda}_{\mu\kappa} = \partial_\lambda\Gamma^{\lambda}_{\mu\kappa} + \frac{1}{2}\{\delta^\lambda_\kappa \partial_\lambda\partial_\mu\Omega + \delta^\lambda_\mu \partial_\lambda\partial_\kappa\Omega - \partial_\lambda (g^{\sigma\lambda}g_{\kappa\mu}\partial_\sigma\Omega) \} = \\
= \partial_\lambda\Gamma^{\lambda}_{\mu\kappa} + \frac{1}{2}\{2\partial_\kappa\partial_\mu\Omega - \partial_\lambda (g^{\sigma\lambda}g_{\kappa\mu})\partial_\sigma\Omega - g^{\sigma\lambda}g_{\kappa\mu} \partial_\lambda\partial_\sigma\Omega \}$$
For the third term of the Ricci tensor, we get
$$\Gamma'^{\rho}_{\mu\lambda} \Gamma'^{\lambda}_{\kappa\rho} = \Gamma^{\rho}_{\mu\lambda} \Gamma^{\lambda}_{\kappa\rho} + \frac{1}{4} \{ (D + 2) - 2 g^{\sigma\rho} g_{\kappa\mu}\partial_\sigma\Omega \partial_\rho\Omega \} + \frac{1}{4}g^{\sigma\lambda} (\partial_\mu g_{\lambda\sigma} \partial_\kappa\Omega + \partial_\kappa g_{\lambda\sigma} \partial_\mu\Omega) + \frac{1}{2}g^{\tau\rho}(\partial_\mu g_{\kappa\tau} + \partial_\kappa g_{\mu\tau})\partial_\rho\Omega - g^{\tau\rho}\partial_\tau g_{\kappa\mu} \partial_\rho\Omega $$
And for the fourth and last term, we get
$$\Gamma'^{\sigma}_{\mu\kappa} \Gamma'^{\lambda}_{\lambda\sigma} = \Gamma^{\sigma}_{\mu\kappa} \Gamma^{\lambda}_{\lambda\sigma} + \frac{1}{4} \{ 2D \partial_\mu\Omega \partial_\kappa\Omega + g^{\rho\sigma} g_{\kappa\mu} \partial_\rho\Omega \partial_\sigma\Omega \} + \frac{D}{4} \{ g^{\rho\sigma} \partial_\mu g_{\kappa\rho} \partial_\sigma\Omega + g^{\rho\sigma} \partial_\kappa g_{\mu\rho} \partial_\sigma\Omega - g^{\rho\sigma} \partial_\rho g_{\kappa\mu} \partial_\sigma\Omega \} + \frac{1}{4} \{ \partial_\mu\Omega g^{\tau\lambda} \partial_\kappa g_{\lambda\tau} + \partial_\kappa\Omega g^{\tau\lambda} \partial_\mu g_{\lambda\tau} - g^{\rho\sigma}g_{\kappa\mu}\partial_\rho\Omega g^{\tau\lambda}\partial_\sigma g_{\lambda\tau} \}$$
Putting it all together, I get the total Ricci tensor as
$$R'_{\mu\kappa} = R_{\mu\kappa} + \frac{1}{2}(D+2)\nabla_\mu \partial_\kappa \Omega - \frac{3}{2}\partial^\sigma g_{\kappa\mu} \partial_\sigma\Omega - \frac{1}{2}g_{\kappa\mu}\square\Omega + \frac{1}{4}(D+2) + \frac{1}{4}g_{\kappa\mu}\partial_\sigma\Omega\partial^\sigma\Omega + \frac{1}{2}g^{\sigma\lambda}\partial_\mu g_{\lambda\sigma}\partial_\kappa\Omega + \frac{1}{2}g^{\sigma\lambda}\partial_\kappa g_{\lambda\sigma}\partial_\mu\Omega - \frac{1}{4}g_{\kappa\mu}\partial^\sigma\Omega g^{\tau\lambda}\partial_\sigma g_{\lambda\tau} + \frac{1}{2}D\partial_\mu\Omega\partial_\kappa\Omega $$
where ##\nabla_\mu## is the covariant derivative, and ##\square = \partial^\sigma\partial_\sigma## is the d'Alembert operator. This seems to be wrong; as far as I can tell, from the formula for the Ricci tensor on https://en.wikipedia.org/wiki/Weyl_transformation, it should rather be something like
$$R'_{\mu\kappa} = R_{\mu\kappa} + \frac{1}{2}(2-D)\nabla_\mu \partial_\kappa \Omega - \frac{1}{2}g_{\kappa\mu}\square\Omega + \frac{1}{4} (D-2) \partial_\mu\Omega\partial_\kappa\Omega - \frac{1}{4} (D-2) g_{\mu\kappa} \partial_\sigma\Omega\partial^\sigma\Omega $$
with the metric in question.

Any suggestions on where I might have gone wrong in the above ##-## I feel a bit stuck for the moment. Thanks a lot in advance.
 
Physics news on Phys.org
Your Christoffel symbols do not account for the fact that ##g_{ab} \to e^{\Omega} g_{ab}## implies ##g^{ab} \to e^{-\Omega} g^{ab}##, so the Christoffel symbols (compare to those in the wiki link), and especially the derivatives of the Christoffel symbols, are off. Taking the conformal factor to be ##\Omega^2## makes things look simpler (or as ##e^{2\Omega}## even simpler), and the results in this form are in Zee's Gravity Ch. VI.I.
 
  • Like
Likes   Reactions: Rabindranath and dextercioby
formodular said:
Your Christoffel symbols do not account for the fact that ##g_{ab} \to e^{\Omega} g_{ab}## implies ##g^{ab} \to e^{-\Omega} g^{ab}##
Thanks for your reply. I do believe, however, that I do account for the fact (correct me if I'm wrong). From the definition of the Christoffel symbol ##\Gamma^\lambda_{\mu\nu} = \frac{1}{2} g^{\sigma\lambda} \{ \partial_\mu g_{\nu\sigma} + \partial_\nu g_{\mu\sigma} - \partial_\sigma g_{\nu\mu} \}##, we get, with the transformation ##g_{\mu\nu} \to e^{\Omega} g_{\mu\nu}## ,
$$\Gamma^\lambda_{\mu\nu} \rightarrow \Gamma'^\lambda_{\mu\nu} = \frac{1}{2} e^{-\Omega} g^{\sigma\lambda} \{ \partial_\mu (e^\Omega g_{\nu\sigma}) + \partial_\nu (e^\Omega g_{\mu\sigma}) - \partial_\sigma (e^\Omega g_{\nu\mu}) \} \\ = \frac{1}{2} e^{-\Omega} g^{\sigma\lambda} \{ e^\Omega \partial_\mu g_{\nu\sigma} + e^\Omega \partial_\nu g_{\mu\sigma} - e^\Omega \partial_\sigma g_{\nu\mu} \} + \frac{1}{2} e^{-\Omega} g^{\sigma\lambda} \{ e^\Omega g_{\nu\sigma} \partial_\mu \Omega + e^\Omega g_{\mu\sigma}\partial_\nu \Omega - e^\Omega g_{\nu\mu}\partial_\sigma \Omega \} \\ = \Gamma^\lambda_{\mu\nu} + \frac{1}{2} \{ \delta^\lambda_\nu \partial_\mu \Omega + \delta^\lambda_\mu \partial_\nu \Omega - g_{\nu\mu}\partial^\lambda \Omega \} $$
which is the equation in the top of my original post, and indeed equivalent to the one at https://en.wikipedia.org/wiki/Weyl_transformation (since, in my case, ##f=f'=e^{\Omega(x)}##). Do you agree?

As for the derivatives of the Christoffel symbols, we then get (for the first term in the Riemann and Ricci tensors, respectively)
$$ \partial_\kappa \Gamma'^\lambda_{\mu\nu} = \partial_\kappa \Gamma^\lambda_{\mu\nu} + \frac{1}{2} \{ \delta^\lambda_\nu \partial_\kappa\partial_\mu \Omega + \delta^\lambda_\mu \partial_\kappa\partial_\nu \Omega - \partial_\kappa (g_{\nu\mu}\partial^\lambda \Omega) \} \text{ (Riemann)} \\ \Rightarrow \partial_\kappa \Gamma'^\lambda_{\mu\lambda} = \partial_\kappa \Gamma^\lambda_{\mu\lambda} + \frac{1}{2} \{ \delta^\lambda_\lambda \partial_\kappa\partial_\mu \Omega + \delta^\lambda_\mu \partial_\kappa\partial_\lambda \Omega - \partial_\kappa (g_{\lambda\mu}\partial^\lambda \Omega) \} \\ = \partial_\kappa \Gamma^\lambda_{\mu\lambda} + \frac{1}{2} D \partial_\kappa\partial_\mu \Omega \text{ (Ricci)} $$
Do I miss something here?
 
I believe you are right, in exponential form those factors from the Christoffels cancel so unfortunately I'm not sure where you're going wrong without basically re-doing it in this notation.

I have a write-up of the conformal transformation of the Ricci scalar in Zee's notation attached in a pdf with all the gory details and it arrives at the correct result as given in Zee - the Ricci tensor is in most of the terms until I contract ##g^{bd}## so it would be very easy to read off most of the calculation and simplify the Ricci tensor to give the result as written in Zee's notation (included), and then compare to the notation of the wiki to figure out what's going wrong.
 

Attachments

Last edited:
Peeling ##\Omega^{-2} g^{bd}## off ##I## and ##V## easily gave me the ##\Omega^{-2}## terms in Zee's Ricci scalar, the other three should give the ##\Omega^{-1}## part which I can check another day but there should be no issue.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
601
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K