Pull and Twist
- 48
- 0
Here's what I am trying to evaluate...
$$\int_{0}^{2}z^2lnz\,dz$$
This is what I did...
$$\lim_{{t}\to{0}}\int_{t}^{2}z^2lnz \,dz$$
Then using integration by parts...
$$u=\ln\left({z}\right)$$
$$du=\frac{1}{z}dz$$
$$dv=z^2dz$$
$$v=\frac{z^3}{3}$$
$$\lim_{{t}\to{0}}\left[\frac{z^3}{3}\ln\left({z}\right)\right]-\frac{1}{3}\int_{t}^{2}z^2\,ds$$
$$\lim_{{t}\to{0}}\frac{1}{3}\left[z^3\ln\left({z}\right)\right]-\frac{1}{9}\left[z^3\right]$$ for $$t \le z\le2$$
I know that $$\left[z^3\ln\left({z}\right)\right]$$ will give me some trouble so I use L'hopital's rule.
$$\left[\frac{\ln\left({z}\right)}{z^\left(-3\right)}\right]\implies
\left[\frac{\frac{1}{z}}{-3z^\left(-4\right)}\right]\implies
-\frac{1}{3}\left[z^3\right]$$
Then I plug that all back into my equation...
$$\lim_{{t}\to{0}}-\frac{1}{9}\left[z^3\right]-\frac{1}{9}\left[z^3\right]$$ for $$t \le z\le2$$
After evaluating I get...
$$-\frac{1}{9}\left[8-0\right]-\frac{1}{9}\left[8-0\right]\implies-\frac{16}{9}$$
What am I doing wrong? The solution manual states that I should be getting $$\frac{8}{3}\ln\left({2}\right)-\frac{8}{9}$$ as my answer.
$$\int_{0}^{2}z^2lnz\,dz$$
This is what I did...
$$\lim_{{t}\to{0}}\int_{t}^{2}z^2lnz \,dz$$
Then using integration by parts...
$$u=\ln\left({z}\right)$$
$$du=\frac{1}{z}dz$$
$$dv=z^2dz$$
$$v=\frac{z^3}{3}$$
$$\lim_{{t}\to{0}}\left[\frac{z^3}{3}\ln\left({z}\right)\right]-\frac{1}{3}\int_{t}^{2}z^2\,ds$$
$$\lim_{{t}\to{0}}\frac{1}{3}\left[z^3\ln\left({z}\right)\right]-\frac{1}{9}\left[z^3\right]$$ for $$t \le z\le2$$
I know that $$\left[z^3\ln\left({z}\right)\right]$$ will give me some trouble so I use L'hopital's rule.
$$\left[\frac{\ln\left({z}\right)}{z^\left(-3\right)}\right]\implies
\left[\frac{\frac{1}{z}}{-3z^\left(-4\right)}\right]\implies
-\frac{1}{3}\left[z^3\right]$$
Then I plug that all back into my equation...
$$\lim_{{t}\to{0}}-\frac{1}{9}\left[z^3\right]-\frac{1}{9}\left[z^3\right]$$ for $$t \le z\le2$$
After evaluating I get...
$$-\frac{1}{9}\left[8-0\right]-\frac{1}{9}\left[8-0\right]\implies-\frac{16}{9}$$
What am I doing wrong? The solution manual states that I should be getting $$\frac{8}{3}\ln\left({2}\right)-\frac{8}{9}$$ as my answer.
Last edited: