Simultaneous measurements of two non-commuting observables don't make sense in QM. Hurkyl knows that. He may have taken it a little too far by claiming that we can imagine a device that performs both measurements at once, but he was definitely right to point out that the uncertainty principle isn't about limitations of measuring devices. It's about a property of state vectors / wave functions.
A few thoughts about the possibility of a device that performs "a simultaneous measurement of two non-commuting observables" on a system... Let's take a spin-1/2 system as an example, and first consider an apparatus that "measures" the z component of the spin. Such a device only needs to produce an inhomogeneous magnetic field and detect the position of the spin-1/2 particle after it's deflected in one direction or the other by the inhomogeneous magnetic field. (
Stern-Gerlach experiment).
A device that performs "a simultaneous measurement of the x component and the y component of the spin" would just be a device that produces
two inhomogeneous magnetic fields in a location that's surrounded by detectors. It's easy to see what would happen in this case: A magnetic field is a vector quantity, so the "two fields" produced by the device would be equivalent to one that's stronger and pointing in the direction defined by the vector sum of the two field vectors.
I expect something similar to hold in all cases, not just in the case of the spin components of spin-1/2 particles. A "simultaneous measurement of two non-commuting observables" would always turn out to be just
one measurement of
one observable that isn't one of the two intended.