Jhenrique
- 676
- 4
My question is hard of answer and the partial answer is in the wikipedia, but maybe someone known some article that already approach this topic and the answer is explicited. So, my question is:
given:
##A = x_1 + x_2##
##B = x_1 x_2##
reverse the relanship:
##x_1 = \frac{A + \sqrt[2]{A^2-4B}}{2} ##
##x_2 = \frac{A - \sqrt[2]{A^2-4B}}{2} ##
So, given
##A = x_1 + x_2 + x_3 ##
##B = x_2 x_3 + x_3 x_1 + x_1 x_2 ##
##C = x_1 x_2 x_3 ##
and:
##A = x_1 + x_2 + x_3 + x_4 ##
##B = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4##
##C = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4##
##D = x_1 x_2 x_3 x_4 ##
thus which would be the inverse relationship for those two systems above?
given:
##A = x_1 + x_2##
##B = x_1 x_2##
reverse the relanship:
##x_1 = \frac{A + \sqrt[2]{A^2-4B}}{2} ##
##x_2 = \frac{A - \sqrt[2]{A^2-4B}}{2} ##
So, given
##A = x_1 + x_2 + x_3 ##
##B = x_2 x_3 + x_3 x_1 + x_1 x_2 ##
##C = x_1 x_2 x_3 ##
and:
##A = x_1 + x_2 + x_3 + x_4 ##
##B = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4##
##C = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4##
##D = x_1 x_2 x_3 x_4 ##
thus which would be the inverse relationship for those two systems above?