Let $f(x)=x^6+10x^5+70x^4+288x^3+880x^2+1600x+1792=(x^2+ax+b)(x^2+px+q)(x^2+mx+n)$ where each of the quadratic factor is greater than zero (since we're told $f(x)$ has all 6 complex roots) and $a,\,b,\,p,\,q,\,m,\,n \in N$.
[TABLE="class: grid, width: 850"]
[TR]
[TD]When $x=-1$, we get:[/TD]
[TD]When $x=1$, we have:[/TD]
[/TR]
[TR]
[TD]$845=(b-a+1)(q-p+1)(n-m+1)$
$5\cdot 13 \cdot 13 =(b-a+1)(q-p+1)(n-m+1)$[/TD]
[TD]$4641=(b+a+1)(p+q+1)(m+n+1)$
$3\cdot 7 \cdot 13 \cdot 17 =(b+a+1)(q+p+1)(n+m+1)$[/TD]
[/TR]
[/TABLE]
If we let $b-a+1=5$, $q-p+1=13$ and $n-m+1=13$, we obtain:
$3\cdot 7 \cdot 13 \cdot 17 =(5+2a)(13+2p)(13+2m)$
Now, if we consider for one more case that is when $x=-2$, that gives
$672=(b-2a+4)(q-2p+4)(n-2m+4)$
$672=(8-a)(16-p)(16-m)$
$2^5\cdot 3 \cdot 7=(8-a)(16-p)(16-m)$
Now, if we focus solely on the conditions
[math]\color{yellow}\bbox[5px,green]{3\cdot 7 \cdot 13 \cdot 17 =(5+2a)(13+2p)(13+2m)}[/math] and [math]\color{green}\bbox[5px,yellow]{2^5\cdot 3 \cdot 7=(8-a)(16-p)(16-m)}[/math],
it's easy to check that $a=4,\,p=2,\,m=4$ satisfy the condition and that yields $b=8,\,p=14,\,m=16$ and hence
$x^2+ax+b=x^2+4x+8=0$ gives the complex roots of $-2 \pm 2i$.
$x^2+px+q=x^2+2x+14=0$ gives the complex roots of $-1 \pm \sqrt{13}i$.
$x^2+mx+n=x^2+4x+16=0$ gives the complex roots of $-2\pm2\sqrt{3}i$.