MHB What are the Abelian Groups of Order 1000 Containing Specific Elements?

  • Thread starter Thread starter GreenGoblin
  • Start date Start date
  • Tags Tags
    Groups
GreenGoblin
Messages
68
Reaction score
0
"determine all abelian groups of order 1000. which of them contains exactly 3 elements of order two and which of them contain exactly 124 elements of order five?"

ok now I have all the terminology down for this. But its the first time attempting such a type of question. How do I go about this please? I know it has to do with products of primes but I am not sure what exactly its referring to by i.e. 3 elements of order two? what are the elements, is it the primes? how do i find out if i have all the combinations, rather than just repeated trial and error. for example i can make 2^3 * 5^5 = 1000, but how will i know i found all of them? is this even the right procedure? i think so... that it is

Gracias,
GreenGoblin
 
Physics news on Phys.org
GreenGoblin said:
"determine all abelian groups of order 1000. which of them contains exactly 3 elements of order two and which of them contain exactly 124 elements of order five?"

ok now I have all the terminology down for this. But its the first time attempting such a type of question. How do I go about this please? I know it has to do with products of primes but I am not sure what exactly its referring to by i.e. 3 elements of order two? what are the elements, is it the primes? how do i find out if i have all the combinations, rather than just repeated trial and error. for example i can make 2^3 * 5^5 = 1000, but how will i know i found all of them? is this even the right procedure? i think so... that it is

Gracias,
GreenGoblin

Look up "Fundamental Theorem of finitely Generated Abelian Groups". You will find it in any standard UG text ( eg Herstein's book). From there it wouldn't be difficult.
 
if G has order 1000, we can write G as H x K, where H has order 8, and K has order 125.

there are 3 possible abelian groups of order 8, namely: Z8, Z4 x Z2, and Z2 x Z2 x Z2, and 3 possible abelian groups of order 125, Z125, Z25 x Z5 and Z5 x Z5 (up to isomorphism, of course). mix and match, that gives us 9 possible abelian groups of order 1000.

it should be clear that elements of order 2 can only live in the "H" part, and the "K" part has to be the identity element of K. so look at how many elements of order 2 are in Z8, Z4 x Z2 and Z2 x Z2 x Z2.

Z8 has but a single element of order 2, namely 4.
every non-identity of Z2 x Z2 x Z2 has order 2, which gives us 7 of them.

that leaves just Z4 x Z2. prove that (2,0), (2,1), and (0,1) are the only elements of order 2, and you're done:

Z4 x Z2 x Z125
Z4 x Z2 x Z25 x Z5
Z4 x Z2 x Z5 x Z5 x Z5 must be the only groups that qualify.

for elements of order 5, use the same reasoning. of our 3 groups of order 125, only Z5 x Z5 x Z5 has 124 elements of order 5 (both Z125 and Z25 x Z5 contain elements of order > 5).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top