What are the basis subsets of a 5-element vector space with additional vectors?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Basis Form Subsets
Click For Summary
SUMMARY

The discussion centers on identifying all subsets of a 5-element vector space basis, specifically the basis $B=\{b_1, b_2, b_3, b_4, b_5\}$, and additional vectors $v_1=b_1+b_2$, $v_2=b_2+b_4$, and $v_3=\sum_{i=1}^5(-1)^ib_i$. Participants confirm that the provided subsets, including $B$ and various combinations of $v_1$, $v_2$, and $v_3$, form valid bases of the vector space. The total number of valid subsets is debated, with a conclusion that 33 unique bases can be formed.

PREREQUISITES
  • Understanding of vector spaces and bases in linear algebra.
  • Familiarity with linear combinations and linear independence.
  • Knowledge of the properties of vector addition and scalar multiplication.
  • Basic proficiency in mathematical notation and set theory.
NEXT STEPS
  • Study the concept of linear independence in vector spaces.
  • Explore the process of generating bases from linear combinations.
  • Learn about the dimension of vector spaces and its implications.
  • Investigate the role of spanning sets in linear algebra.
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for examples of basis identification in vector spaces.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $V$ be a vector space with with a 5-element basis $B=\{b_1, \ldots , b_5\}$ and let $v_1:=b_1+b_2$, $v_2:=b_2+b_4$ and $\displaystyle{v_3:=\sum_{i=1}^5(-1)^ib_i}$.

I want to determine all subsets of $B\cup \{v_1, v_2, v_3\}$ that form a basis of $V$.
Are the desired subsets the following ones?

- $B$
- $\{v_1, b_2, b_3, b_4, b_5\}$
- $\{v_1, b_1, b_3, b_4, b_5\}$
- $\{v_2, b_1, b_2, b_3, b_5\}$
- $\{v_2, b_1, b_3, b_4, b_5\}$
- $\{v_3, b_1, b_2, b_3, b_4\}$
- $\{v_3, b_1, b_2, b_3, b_5\}$
- $\{v_3, b_1, b_2, b_4, b_5\}$
- $\{v_3, b_1, b_3, b_4, b_5\}$
- $\{v_3, b_2, b_3, b_4, b_5\}$
- $\{v_1, v_2, b_2, b_3, b_5\}$ Are there also more sets? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

Yep. Those are all a basis of $V$.
And yes, there are more sets.
Currently you have all the ones with exactly one of $\{v_1,v_2,v_3\}$, but only those.
For starters, shouldn't $\{b_1, b_2, b_3, b_4, b_5\}$ be in the list?
And how about $\{v_1, v_2, b_1, b_3, b_5\}$? (Wondering)
 
Klaas van Aarsen said:
Currently you have all the ones with exactly one of $\{v_1,v_2,v_3\}$, but only those.
For starters, shouldn't $\{b_1, b_2, b_3, b_4, b_5\}$ be in the list?

That is the set $B$, so I have added that one. (Thinking)
Klaas van Aarsen said:
And how about $\{v_1, v_2, b_1, b_3, b_5\}$? (Wondering)

The elements $b_1$ and $b_2$ can be replaced by $v_1$, the elements $b_2$ and $b_4$ can be replaced by $v_2$ and the all the elements $b_i$ can be replaced by $v_3$, right? (Wondering)

So, we get the following sets:

- $B=\{b_1, b_2, b_3, b_4, b_5\}$
- $\{v_1, b_2, b_3, b_4, b_5\}$
- $\{b_1, v_1, b_3, b_4, b_5\}$
- $\{b_1, v_2, b_3, b_4, b_5\}$
- $\{b_1, b_2, b_3, v_2, b_5\}$
- $\{v_3, b_2, b_3, b_4, b_5\}$
- $\{b_1, v_3, b_3, b_4, b_5\}$
- $\{b_1, b_2, v_3, b_4, b_5\}$
- $\{b_1, b_2, b_3, v_3, b_5\}$
- $\{b_1, b_2, b_3, b_4, v_3\}$
- $\{v_1, v_2, b_3, b_4, b_5\}$
- $\{v_1, b_2, b_3, v_2, b_5\}$
- $\{b_1, v_1, b_3, v_2, b_5\}$
- $\{v_1, v_3, b_3, b_4, b_5\}$
- $\{v_1, b_2, v_3, b_4, b_5\}$
- $\{v_1, b_2, b_3, v_3, b_5\}$
- $\{v_1, b_2, b_3, b_4, v_3\}$
- $\{v_3, v_1, b_3, b_4, b_5\}$
- $\{b_1, v_1, v_3, b_4, b_5\}$
- $\{b_1, v_1, b_3, v_3, b_5\}$
- $\{b_1, v_1, b_3, b_4, v_3\}$
- $\{v_3, v_2, b_3, b_4, b_5\}$
- $\{b_1, v_2, v_3, b_4, b_5\}$
- $\{b_1, v_2, b_3, v_3, b_5\}$
- $\{b_1, v_2, b_3, b_4, v_3\}$
- $\{v_3, b_2, b_3, v_2, b_5\}$
- $\{b_1, v_3, b_3, v_2, b_5\}$
- $\{b_1, b_2, v_3, v_2, b_5\}$
- $\{b_1, b_2, b_3, v_2, v_3\}$

I think I have now all the popssible sets, or not? (Wondering)
 
Last edited by a moderator:
You have 29 sets, but I think there are 33. (Thinking)

I have:
\begin{align*}
\{b_1, b_2, b_3, b_4, b_5\} \\
\{v_1, b_1, b_3, b_4, b_5\} \\
\{v_1, b_2, b_3, b_4, b_5\} \\
\{v_1, v_2, b_1, b_3, b_5\} \\
\{v_1, v_2, b_2, b_3, b_5\} \\
\{v_1, v_2, b_3, b_4, b_5\} \\
\{v_1, v_2, v_3, b_1, b_3\} \\
\{v_1, v_2, v_3, b_1, b_5\} \\
\{v_1, v_2, v_3, b_2, b_3\} \\
\{v_1, v_2, v_3, b_2, b_5\} \\
\{v_1, v_2, v_3, b_3, b_4\} \\
\{v_1, v_2, v_3, b_3, b_5\} \\
\{v_1, v_2, v_3, b_4, b_5\} \\
\{v_1, v_3, b_1, b_3, b_4\} \\
\{v_1, v_3, b_1, b_3, b_5\} \\
\{v_1, v_3, b_1, b_4, b_5\} \\
\{v_1, v_3, b_2, b_3, b_4\} \\
\{v_1, v_3, b_2, b_3, b_5\} \\
\{v_1, v_3, b_2, b_4, b_5\} \\
\{v_1, v_3, b_3, b_4, b_5\} \\
\{v_2, b_1, b_2, b_3, b_5\} \\
\{v_2, b_1, b_3, b_4, b_5\} \\
\{v_2, v_3, b_1, b_2, b_3\} \\
\{v_2, v_3, b_1, b_2, b_5\} \\
\{v_2, v_3, b_1, b_3, b_4\} \\
\{v_2, v_3, b_1, b_4, b_5\} \\
\{v_2, v_3, b_2, b_3, b_5\} \\
\{v_2, v_3, b_3, b_4, b_5\} \\
\{v_3, b_1, b_2, b_3, b_4\} \\
\{v_3, b_1, b_2, b_3, b_5\} \\
\{v_3, b_1, b_2, b_4, b_5\} \\
\{v_3, b_1, b_3, b_4, b_5\} \\
\{v_3, b_2, b_3, b_4, b_5\} \\
\end{align*}
 
Ahh ok! But the idea is the following, or not?

We consider the basis $B=\{b_1, b_2, b_3, b_4, b_5\}$. The vector $v_1$ replace each of the vectors $b_1$ and $b_2$, the vector $v_2$ can replace each of the vectors $b_2$ and $b_4$, the vector $v_3$ can replace each of the 5 vectors $b_1, b_2, b_3, b_4, b_5$, and the set that we get is again a basis since the elements remain linearly independent.

(Wondering)
 
mathmari said:
Ahh ok! But the idea is the following, or not?

We consider the basis $B=\{b_1, b_2, b_3, b_4, b_5\}$. The vector $v_1$ replace each of the vectors $b_1$ and $b_2$, the vector $v_2$ can replace each of the vectors $b_2$ and $b_4$, the vector $v_3$ can replace each of the 5 vectors $b_1, b_2, b_3, b_4, b_5$, and the set that we get is again a basis since the elements remain linearly independent.

That sounds about right.
I also think that it's easy to make mistakes. (Worried)
 
Klaas van Aarsen said:
I also think that it's easy to make mistakes. (Worried)

What do you mean? (Wondering)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K