MHB What are the correcting words for matrices with equal integral entries?

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am trying to figure what is the correct phrase in the bolden phrase. The article, where I am doing my research on, states: Let S be the set of all 2x2 matrices with equal positive integral entries. Let T be the set of all 2x2 matrices with equal integral entries. My professors are getting frustrated due to the circle effect that I am making the same error over many times. So what is the correcting words that fixed? Is it "having" or other words.

Beginning:

Different algebraic systems raise many questions. For instance, can the elements in a given system always be factored into primes? If so, what theorems can help factoring the elements? Are the factors unique? The poster will discuss the answers to these questions through examples and theorems for a class of $2\times2$ matrices with equal integers entries.
Let $S$ be the set of all $2\times2$ matrices with equal positive integers entries.

Conclusion:
The elements of the set $T$ can always be factored; however, most of the elements in the set $T$ are not uniquely factorable. There are theorems that can assist in determining the factorization of elements of $T$. Future investigation might include studying whether there are similar theorems for each class of $n\times n$ matrices with equal integers entries.
Thanks,
Cbarker1
 
Last edited:
Mathematics news on Phys.org
Re: writing a correction phrase in a poster

Dear Fellow Members,

I am trying to figure out how to correct the bold phrases below. The article on which I am doing my research states: Let $S$ be the set of all 2x2 matrices with equal positive integral entries and let $T$ be the set of all 2x2 matrices with equal integral entries. My professors are getting frustrated due to the circular effect that I am creating. I am making the same error many times. So how do I fix these? Do I use "having" or another word?

Beginning:

Different algebraic systems raise many questions. For instance, can the elements in a given system always be factored into primes? If so, what theorems can help factor the elements? Are the factors unique? The poster will discuss the answers to these questions through examples and theorems for a class of 2x2 matrices with equal integer entries.

Let $S$ be the set of all 2x2 matrices with equal positive integer entries.

Conclusion:
The elements of the set $T$ can always be factored; however, most of the elements in the set $T$ are not uniquely factorisable. There are theorems that can assist in determining the factorisation of the elements of $T$. Future investigation might include studying whether there are similar theorems for each class of nxn matrices with equal integer entries.

Hi CBarker1.

Above is a corrected version of the material in your original post. Compare the two and ask questions about anything you need clarification on.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top