Graduate Differences between Actions in Curved Spacetime

  • Thread starter Thread starter Haorong Wu
  • Start date Start date
  • Tags Tags
    Spacetime
Click For Summary
The discussion highlights the differences between two actions for a scalar field in curved spacetime, as presented in two academic papers. The first action, derived from Anastopoulos and Hu, does not couple the curvature scalar R to the scalar field, while the second action from Carroll includes this coupling. It is noted that the first action is not conformally invariant in four dimensions for m = 0, whereas the second action is invariant for a specific value of ξ, specifically ξ = 1/6. The minimally coupled case occurs when ξ = 0. The two actions indeed describe different physical situations, as demonstrated by deriving their equations of motion and energy-momentum tensors.
Haorong Wu
Messages
419
Reaction score
90
TL;DR
I have found two different actions of scalar field in curved spacetime. I am not sure their differences.
First, in Anastopoulos C, Hu B L. A master equation for gravitational decoherence: probing the textures of spacetime[J]. Classical and Quantum Gravity, 2013, 30(16): 165007. , the Einstein-Hilbert action is used to analysis a quantum matter field interacting with the gravitational field, $$S=\frac 1 \kappa \int d^4 x \sqrt{-g} R + \int d^4 x \sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2) .$$

Then, in Spacetime and geometry by Sean M. Carroll, section 9.4, the quantum field theory in curved spacetime consider the following Lagrange density $$L=\sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2 -\xi R \phi^2) .$$

It appears that in the first paper, the curvature scalar ##R## does not couple to the scalar field, while the one in the second case does.

Are the two actions/Lagrangians describe different situations?
 
Physics news on Phys.org
Haorong Wu said:
Summary:: I have found two different actions of scalar field in curved spacetime. I am not sure their differences.
S=\frac 1 \kappa \int d^4 x \sqrt{-g} R + \int d^4 x \sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2) .L=\sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2 -\xi R \phi^2).
In 4 dimensions and for m = 0, the first action is not conformal invariant while the second one is invariant for the specific value \xi = \frac{1}{6}. Also, the case \xi = 0 is called minimally coupled.
Are the two actions/Lagrangians describe different situations?
Yes they are, for you can convince yourself by deriving the equations of motions and the energy-momentum tensors from both actions.
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
908
  • · Replies 1 ·
Replies
1
Views
646
  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K