MHB What are the ideals of the ring Z[x]/<2, x^3 + 1>?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Polynomial Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I would like help to get started on the following problem:

Determine all the ideals of the ring $$ \mathbb{Z}[x]/<2, x^3 + 1> $$

Appreciate some guidance.

Peter
 
Physics news on Phys.org
Have a look at problem 6:

http://livetoad.org/Courses/Documents/84dd/Exams/answers_exam_1.pdf
 
Fernando Revilla said:
Have a look at problem 6:

http://livetoad.org/Courses/Documents/84dd/Exams/answers_exam_1.pdf

Thanks Fernando, most helpful

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top