mathwonk
Science Advisor
Homework Helper
2024 Award
- 11,957
- 2,231
advertisement for an algebraic geometry course
ALGEBRAIC GEOMETRY: MATH 8300: A GRAD. COURSE TO BE OFFERED FALL 2001.
Just as vector spaces are the geometric side of matrices, so algebraic varieties are the geometric aspect of polynomials. Since polynomials occur everywhere their geometry is fundamental. More explicitly, a linear subspace of R^n, or C^n, is the solution set of a finite system of linear equations, and an algebraic subvariety of R^n, or C^n, is the solution set of a finite system of polynomial equations. Even more than with vector spaces, the notion of algebraic variety permits geometric intuition to be brought to bear on a wide variety of problems, from pure algebra, ring theory, and number theory, to topology, real and complex analysis, differential equations and mathematical physics. Conversely, these subjects illumine and provide tools for algebraic geometry.
Algebraic varieties are an unusually rich source of interesting examples. The study of four-manifolds in topology has long been concerned with those which occur as complex algebraic surfaces, especially since the work of Simon Donaldson (Fields medalist in 1986). Historically the fundamental result on compact Riemann surfaces, is that every compact complex one-manifold is the Riemann surface of some "algebraic function", i.e. of some algebraic curve in P^2.
(Example: The fact that every compact complex one-manifold M of genus one has the form C/L for some lattice L in C is rather deep, but if we assume this we can represent M as a plane cubic curve using "elliptic functions" from complex analysis, as follows: the famous differential equation (P' )^2=4 P^3 - g2 P - g3 , for the Weierstrass P function (cf. Ahlfors) implies that the complex torus C/L is mapped by the pair of meromorphic functions ( P, P' ) to (the projectivization of) the non singular algebraic curve with equation y^2=4x^3-g2 x-g3. Since P has degree two in the period parallogram and P' is odd, this is an injection, hence an isomorphism.)
If a single equation in two variables can give rise to every compact complex one-manifold, just imagine how rich is the field of examples provided by arbitrary systems of equations in n variables! Furthermore, Grothendieck in the 50's and 60's generalized this classical setting enormously, to one in which every commutative ring can be considered the ring of regular functions on some abstract algebraic variety! From Grothendieck's point of view, commutative ring theory and algebraic number theory are special cases of algebraic geometry. Today some beginnings are being made also in non-commutative algebraic geometry, especially its links with the representation theory of groups and algebras.
Research into classification of classical algebraic varieties is most advanced in (but is not restricted to) the cases of one, two, and three dimensions, with the one dimensional case highly evolved but not at all completely understood, the two dimensional case still appearing to offer many unsolved problems, and the three dimensional case only recently beginning to emerge from the category of mostly uncharted territory, with the work of Mori, Kollar, and others.
For example the deceptively simple (but decades old) question of whether the two Fermat equations x^3+y^3+z^3+w^3=0 and x+y+z+w=0 have essentially isomorphic solution sets was only settled (negatively) in 1972, by C.H.Clemens and P.A.Griffiths in a famous 90 page Annals paper ! Over non -algebraically -closed fields the questions are even harder.
The famous Mordell conjecture in number theory, solved in the 80's by Faltings, was to decide whether a non singular algebraic plane curve over Q could have an infinite number of points when its Riemann surface over C has genus > 1. The answer, which required the refinement to the "arithmetic case" of much of the machinery of modern algebraic geometry, is "no", (as Mordell had conjectured).
The "Last Theorem" of Fermat (recently proved) is the assertion that in the special case of the curve x^n+y^n+z^n=0, whose Riemann surface has genus g=(1/2)(n-1)(n-2), that the finite number of points is actually zero (even when g>0, i.e. n>2).
One of the most fascinating topics in algebraic geometry, and one of my own favorites, is the study of "moduli spaces", a field initiated by Riemann. This topic investigates the consequences of the surprising and powerful point of view that in many cases the set of isomorphism classes of algebraic varieties, with fixed topological invariants, can itself be given the structure of an algebraic variety ! The best known case of this phenomenon is probably the familiar fact from complex analysis that the set of isomorphism classes of one dimensional compact complex tori correspond naturally, via the "J-invariant", to the set C of complex numbers.
Several outstanding algebraic geometers have considered, over the last decade, the problem of determining the "Kodaira" dimension of the moduli spaces Mg of curves of genus g, and the spaces An of "principally polarized" complex tori of dimension n. Still, I believe most cases of curves of genera 13< g < 24, and tori of dimension n = 6, remain open.
A very exciting and beautiful recent development is a revolution in the classical subject of enumerative geometry wrought by inputs from physics. Nineteenth century geometers knew well that a smooth complex projective cubic surface carries exactly 27 lines and even that a general quintic threefold carries 2875 lines, but related questions such as how many conics and rational cubic curves lie on the quintic, were resolved only recently, with much effort.
Then physicists produced a link between “Calabi Yau” manifolds such as the quintic theefold, and quantum field theories, deducing a formula containing the expected numbers Nd of rational curves of degrees d for all d, which allows one to solve recursively for Nd in terms of the Ne for smaller values e < d. It remains to understand the physicists answer and determine whether it is really correct, since they fearlessly give a candidate number even in cases where the true number of curves is unknown even to be finite! This problem is still open for all d ≥ 10.
The course beginning in the fall will be an introductory one to the fascinating field of algebraic geometry, with the excellent book Basic Algebraic Geometry by Shafarevich, as primary text. My hope is to cover roughly part I, "Algebraic Varieties in a Projective Space" which treats the semi-modern (circa 1940-50) general theory of algebraic sets in the classical setting of projective space, supplemented by examples from the book of Joe Harris. Parts II and III of Shafarevich contain a very rudimentary account of the idea of an abstract variety, and a lovely treatment of varieties over the complex numbers with relations to complex analysis.
The yellow covered “redbook” by Mumford covers abstract algebraic varieties and more advanced topics such as schemes. Although we will likely not get into that book, I recommend interested students buy it anyway before it goes out of print. Mumford is one of the 20th century’s best masters of the subject and there is no adequate substitute for his writings among more recent books.
The technical prerecquisite for Math 846-7-8 is only some knowledge of rings, fields, and modules, but sometimes we might mention connections with topology and complex analysis if appropriate. The 8000 level algebra sequence is plenty of preparation, and for many topics the 6000 level sequence suffices. The student who wants to start reading in algebraic geometry at an elementary level can find the elements of the theory of curves, in a modern language, in the lovely book Algebraic Curves by Fulton. An even more elementary introduction is the book of the same title by R.J.Walker. I especially like chapter III of Walker.
Bibliography on Algebraic Geometry:
The classic, and singularly readable, 1949 work Introduction to Algebraic Geometry by Semple and Roth is an introduction to the subject as it was about 1940, just before the modern period began. Cohomology on algebraic varieties is treated in Serre's famous 1957 Annals paper "Faisceaux Algebriques Coherents", and also in recent Johns Hopkins course notes by George Kempf.
Joe Harris' Harvard course notes focus on examples of varieties. The Red Book of Varieties and Schemes by Mumford is an excellent introduction to the language of schemes, and Algebraic Geometry by Hartshorne includes schemes and cohomology.
Excellent books on complex algebraic geometry include Griffiths' Introduction to Algebraic Curves; Clemens' A Scrapbook of Complex Curve Theory; Mumford's Algebraic Geometry I; Geometry of Algebraic Curves by Arbarello, Cornalba, Griffiths, Harris; Beauville's Complex Algebraic Surfaces, and Principles of Algbraic Geometry by Griffiths-Harris.
It is particularly enlightening to follow the evolution of algebraic geometry in contemporary accounts by some of its prime movers: Hilbert, Castelnuovo, Zariski, Weil, Serre, Kodaira, Segre, Severi, Van der Waerden, Grothendieck, Hironaka, Mumford, Deligne, Fulton, Harris, MacPherson, Arbarello, Clemens, Faltings (Fields medal talk by Mazur), and Mori, in their ICM talks in 1900, 1928, 1950, 1954, 1958, 1962, 1970, 1974, 1982(3), 1986, and 1990. [Note that in 1950, Zariski and Weil, were placed in "algebra".]
ALGEBRAIC GEOMETRY: MATH 8300: A GRAD. COURSE TO BE OFFERED FALL 2001.
Just as vector spaces are the geometric side of matrices, so algebraic varieties are the geometric aspect of polynomials. Since polynomials occur everywhere their geometry is fundamental. More explicitly, a linear subspace of R^n, or C^n, is the solution set of a finite system of linear equations, and an algebraic subvariety of R^n, or C^n, is the solution set of a finite system of polynomial equations. Even more than with vector spaces, the notion of algebraic variety permits geometric intuition to be brought to bear on a wide variety of problems, from pure algebra, ring theory, and number theory, to topology, real and complex analysis, differential equations and mathematical physics. Conversely, these subjects illumine and provide tools for algebraic geometry.
Algebraic varieties are an unusually rich source of interesting examples. The study of four-manifolds in topology has long been concerned with those which occur as complex algebraic surfaces, especially since the work of Simon Donaldson (Fields medalist in 1986). Historically the fundamental result on compact Riemann surfaces, is that every compact complex one-manifold is the Riemann surface of some "algebraic function", i.e. of some algebraic curve in P^2.
(Example: The fact that every compact complex one-manifold M of genus one has the form C/L for some lattice L in C is rather deep, but if we assume this we can represent M as a plane cubic curve using "elliptic functions" from complex analysis, as follows: the famous differential equation (P' )^2=4 P^3 - g2 P - g3 , for the Weierstrass P function (cf. Ahlfors) implies that the complex torus C/L is mapped by the pair of meromorphic functions ( P, P' ) to (the projectivization of) the non singular algebraic curve with equation y^2=4x^3-g2 x-g3. Since P has degree two in the period parallogram and P' is odd, this is an injection, hence an isomorphism.)
If a single equation in two variables can give rise to every compact complex one-manifold, just imagine how rich is the field of examples provided by arbitrary systems of equations in n variables! Furthermore, Grothendieck in the 50's and 60's generalized this classical setting enormously, to one in which every commutative ring can be considered the ring of regular functions on some abstract algebraic variety! From Grothendieck's point of view, commutative ring theory and algebraic number theory are special cases of algebraic geometry. Today some beginnings are being made also in non-commutative algebraic geometry, especially its links with the representation theory of groups and algebras.
Research into classification of classical algebraic varieties is most advanced in (but is not restricted to) the cases of one, two, and three dimensions, with the one dimensional case highly evolved but not at all completely understood, the two dimensional case still appearing to offer many unsolved problems, and the three dimensional case only recently beginning to emerge from the category of mostly uncharted territory, with the work of Mori, Kollar, and others.
For example the deceptively simple (but decades old) question of whether the two Fermat equations x^3+y^3+z^3+w^3=0 and x+y+z+w=0 have essentially isomorphic solution sets was only settled (negatively) in 1972, by C.H.Clemens and P.A.Griffiths in a famous 90 page Annals paper ! Over non -algebraically -closed fields the questions are even harder.
The famous Mordell conjecture in number theory, solved in the 80's by Faltings, was to decide whether a non singular algebraic plane curve over Q could have an infinite number of points when its Riemann surface over C has genus > 1. The answer, which required the refinement to the "arithmetic case" of much of the machinery of modern algebraic geometry, is "no", (as Mordell had conjectured).
The "Last Theorem" of Fermat (recently proved) is the assertion that in the special case of the curve x^n+y^n+z^n=0, whose Riemann surface has genus g=(1/2)(n-1)(n-2), that the finite number of points is actually zero (even when g>0, i.e. n>2).
One of the most fascinating topics in algebraic geometry, and one of my own favorites, is the study of "moduli spaces", a field initiated by Riemann. This topic investigates the consequences of the surprising and powerful point of view that in many cases the set of isomorphism classes of algebraic varieties, with fixed topological invariants, can itself be given the structure of an algebraic variety ! The best known case of this phenomenon is probably the familiar fact from complex analysis that the set of isomorphism classes of one dimensional compact complex tori correspond naturally, via the "J-invariant", to the set C of complex numbers.
Several outstanding algebraic geometers have considered, over the last decade, the problem of determining the "Kodaira" dimension of the moduli spaces Mg of curves of genus g, and the spaces An of "principally polarized" complex tori of dimension n. Still, I believe most cases of curves of genera 13< g < 24, and tori of dimension n = 6, remain open.
A very exciting and beautiful recent development is a revolution in the classical subject of enumerative geometry wrought by inputs from physics. Nineteenth century geometers knew well that a smooth complex projective cubic surface carries exactly 27 lines and even that a general quintic threefold carries 2875 lines, but related questions such as how many conics and rational cubic curves lie on the quintic, were resolved only recently, with much effort.
Then physicists produced a link between “Calabi Yau” manifolds such as the quintic theefold, and quantum field theories, deducing a formula containing the expected numbers Nd of rational curves of degrees d for all d, which allows one to solve recursively for Nd in terms of the Ne for smaller values e < d. It remains to understand the physicists answer and determine whether it is really correct, since they fearlessly give a candidate number even in cases where the true number of curves is unknown even to be finite! This problem is still open for all d ≥ 10.
The course beginning in the fall will be an introductory one to the fascinating field of algebraic geometry, with the excellent book Basic Algebraic Geometry by Shafarevich, as primary text. My hope is to cover roughly part I, "Algebraic Varieties in a Projective Space" which treats the semi-modern (circa 1940-50) general theory of algebraic sets in the classical setting of projective space, supplemented by examples from the book of Joe Harris. Parts II and III of Shafarevich contain a very rudimentary account of the idea of an abstract variety, and a lovely treatment of varieties over the complex numbers with relations to complex analysis.
The yellow covered “redbook” by Mumford covers abstract algebraic varieties and more advanced topics such as schemes. Although we will likely not get into that book, I recommend interested students buy it anyway before it goes out of print. Mumford is one of the 20th century’s best masters of the subject and there is no adequate substitute for his writings among more recent books.
The technical prerecquisite for Math 846-7-8 is only some knowledge of rings, fields, and modules, but sometimes we might mention connections with topology and complex analysis if appropriate. The 8000 level algebra sequence is plenty of preparation, and for many topics the 6000 level sequence suffices. The student who wants to start reading in algebraic geometry at an elementary level can find the elements of the theory of curves, in a modern language, in the lovely book Algebraic Curves by Fulton. An even more elementary introduction is the book of the same title by R.J.Walker. I especially like chapter III of Walker.
Bibliography on Algebraic Geometry:
The classic, and singularly readable, 1949 work Introduction to Algebraic Geometry by Semple and Roth is an introduction to the subject as it was about 1940, just before the modern period began. Cohomology on algebraic varieties is treated in Serre's famous 1957 Annals paper "Faisceaux Algebriques Coherents", and also in recent Johns Hopkins course notes by George Kempf.
Joe Harris' Harvard course notes focus on examples of varieties. The Red Book of Varieties and Schemes by Mumford is an excellent introduction to the language of schemes, and Algebraic Geometry by Hartshorne includes schemes and cohomology.
Excellent books on complex algebraic geometry include Griffiths' Introduction to Algebraic Curves; Clemens' A Scrapbook of Complex Curve Theory; Mumford's Algebraic Geometry I; Geometry of Algebraic Curves by Arbarello, Cornalba, Griffiths, Harris; Beauville's Complex Algebraic Surfaces, and Principles of Algbraic Geometry by Griffiths-Harris.
It is particularly enlightening to follow the evolution of algebraic geometry in contemporary accounts by some of its prime movers: Hilbert, Castelnuovo, Zariski, Weil, Serre, Kodaira, Segre, Severi, Van der Waerden, Grothendieck, Hironaka, Mumford, Deligne, Fulton, Harris, MacPherson, Arbarello, Clemens, Faltings (Fields medal talk by Mazur), and Mori, in their ICM talks in 1900, 1928, 1950, 1954, 1958, 1962, 1970, 1974, 1982(3), 1986, and 1990. [Note that in 1950, Zariski and Weil, were placed in "algebra".]
0 in P^n pulls back to a “divisor” ∑ njpj on S, and if ƒi = zi/z0 then the meromorphic function ƒi has divisor div(ƒi) = div(zi/z0) = div(zi) - div(z0) = ƒ*(Hi)-ƒ*(H0).