Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What are the properties of the Higgs field?

  1. Jul 9, 2012 #1
    Does the Higgs field of a fermion exclusively attract just like a gravitational field? Or can it also have repulsion? Is the Higgs field separate from the gravitational field or is the Higgs field the cause of gravity? If the Higgs field is separate from the gravitational field, then what is its significance if gravity does the work of attracting objects on a large scale and electromagnetic and nuclear forces are responsible for attraction and repulsion on the microscopic scale?

    It says in the Wikipedia article: http://en.wikipedia.org/wiki/Higgs_field, on the Higgs field, that the Higgs field is responsible for giving fermions mass by transferring energy to the particles and that different fermions have different capacities for absorbing energy from the Higgs field and the limit to the energy capacity is the mass of the particle. So the Higgs field then interacts with the absorbed energy of the fermions which limits the speed of the fermions to below the speed of light.

    Does the Higgs field simply permeate space? Or does each fermion carry its own Higgs field just like it has the other fields? Does a particle with a higher amount of mass have a corresponding increase in the strength of its Higgs and other fields, just like how an ionized atomic nucleus with more protons will be more massive and have correspondingly stronger electromagnetic fields?
     
  2. jcsd
  3. Jul 10, 2012 #2
    The thread originator is requesting an answer to the questions.
     
  4. Jul 10, 2012 #3

    Bill_K

    User Avatar
    Science Advisor

    "Higgs field of a fermion" - There is only one Higgs field.
    "is the Higgs field the cause of gravity?" - The Higgs field has nothing to do with gravity.
    "what is its significance?" - The Higgs field breaks electroweak symmetry(*) in a way that permits particles to have nonzero mass. (*)That is, its primary effect is to make the electromagnetic and weak interaction different.
    "It says in the Wikipedia article: http://en.wikipedia.org/wiki/Higgs_field..." [Broken] - This is a very shaky article, not up to Wikipedia standards.
    "Does the Higgs field simply permeate space?" - Yes.
    "Does a particle with a higher amount of mass have a corresponding increase in the strength of its Higgs and other fields?" - The mass of a particle is determined by how strongly it couples to the Higgs field. But the strength of this interaction (and therefore the real cause of mass) lies beyond the reach of current theory.
     
    Last edited by a moderator: May 6, 2017
  5. Jul 10, 2012 #4
    So the concept of the Higgs field is like the space-time continuum said to be responsible for gravity. It is an omnipresent field unlike the concept of each charged particle being surrounded by its own electric field.

    But since the particle discovered recently at the LHC is said to be only similar to the Higgs particle and has not yet been studied extensively, no conclusion can be made if the properties of the Higgs boson and the Higgs particle predicted by theories are true or not.
     
  6. Jul 10, 2012 #5

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Pay money to someone, and you can expect an answer from him. Otherwise, keep in mind that others might help you for free, and if that does not happen do not get impolite, please.

    No. The fields in quantum field theory are not like the spacetime in general relativity.

    Well, it is expected to be the Higgs boson. We will know more in 6 months, when the full 2012 dataset is analysed.
     
  7. Jul 10, 2012 #6
    So in quantum field theory, each fermion is surrounded by its own set of fields. Just like in this definition of an electric field which states that each charged particle is surrounded by its own field:

    http://en.wikipedia.org/wiki/Electric_field
     
  8. Jul 11, 2012 #7
    I think you are looking at it back to front. In QFT each particle type has its own field and the particle is an excitation of that field.
     
  9. Jul 12, 2012 #8
    Which branch of quantum physics deals with the concept of fermions being surrounded by their own individual fields instead of bosons being excitations of omnipresent fields?
     
  10. Jul 12, 2012 #9

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Quantum field theory deals with fields - and as stated above, particles are "just" excitations of those fields. An electron is an excitation of the "electron field", a Higgs particle is an excitation of the Higgs field, and so on. In case of the electron, you have to take spin into account, but that is not relevant here.
     
  11. Jul 13, 2012 #10
    Is there a branch of quantum physics where elementary particles are not treated as excitations of fields?
     
  12. Jul 13, 2012 #11

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Classical and relativistic quantum physics.
    For chemistry and everything similar, this is fine.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: What are the properties of the Higgs field?
  1. Higgs Field (Replies: 19)

  2. The higgs field? (Replies: 20)

  3. Higgs Field (Replies: 12)

Loading...