What are the units for the slope in an Acceleration vs Mass Graph?

Click For Summary
In an Atwood Simulation lab, the relationship between acceleration and mass is identified as linear, with acceleration measured in m/s² and mass in kg. The slope of the graph is calculated as m/kg·s², which simplifies to N (Newtons), confirming the relationship. The experiment's setup involves two masses on either side of a pulley, with one mass varying while the combined mass remains constant, leading to a straight line on the graph. Although the unit m/kg·s² may seem unusual, it is correct for this context. Understanding these units is crucial for accurately interpreting the results of the lab.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Using Quick graph, plot a graph of acceleration vs. ∆m, using the Part I data. Based on your analysis of the graph, what is the relationship between the mass difference and the acceleration of an Atwood’s machine? Do a linear best fit, and report the slope value (don’t forget the units).
Relevant Equations
a=m/s^2
m=kg
I am doing an Atwood Simulation lab. I am having trouble with this part of my lab that ask the question provided.

I can tell that the relationship is linear and that as the mass increases at a constant rate the acceleration increases.

Logger pro tells me that the slope is 31.43. I am having trouble thinking about what the units would be for the slope.

Acceleration is m/s^2. Mass is in kg. I believe that since I have a fraction of a kilogram I would then have:
m/s^2 / 1/kg which would then give me N.
Is that correct? If not where am I going wrong

Screen Shot 2021-03-08 at 8.16.19 PM.png
 

Attachments

  • Screen Shot 2021-03-08 at 8.16.19 PM.png
    Screen Shot 2021-03-08 at 8.16.19 PM.png
    18.5 KB · Views: 240
Physics news on Phys.org
Units for the slope, y/x, will be (whatever the units are on the y axis)/(whatever the units are on the x axis).

Out of interest, what exactly is the set up in the experiment? For a typical set up of two masses hung either side of a pulley, and varying only one mass, the acceleration should not be a linear function of the mass difference.
 
  • Like
Likes guyvsdcsniper
haruspex said:
Units for the slope, y/x, will be (whatever the units are on the y axis)/(whatever the units are on the x axis).

Out of interest, what exactly is the set up in the experiment? For a typical set up of two masses hung either side of a pulley, and varying only one mass, the acceleration should not be a linear function of the mass difference.

So it would m/kg*s^2? It just seems like such an odd unit I've never seen that before.

I've attached the instructions and my data for this part of the lab. Am I doing something wrong?
 

Attachments

quittingthecult said:
So it would m/kg*s^2? It just seems like such an odd unit I've never seen that before.

I've attached the instructions and my data for this part of the lab. Am I doing something wrong?
So in this experiment the combined mass is held constant. That explains why you get a straight line.
Yes, it would be m kg-1s-2. Don't worry about how odd it looks.
 
  • Like
Likes guyvsdcsniper
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
8K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
839
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 13 ·
Replies
13
Views
3K