MHB What Are the Values of a and b for a Cubic Curve's Tangent Line?

AI Thread Summary
The tangent line y = 16x - 9 touches the curve y = 2x^3 + ax^2 + bx - 9 at the point (1, 7). To find the values of a and b, the conditions a + b = 14 and 2a + b = 10 are established from the curve's equation and its derivative. Solving this system yields a = -4 and b = 18. The calculations confirm that the tangent line's slope matches the curve's gradient at the specified point. The discussion effectively demonstrates the process of determining parameters for a cubic curve's tangent line.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Curve Tangent Question?

Hello,

The line y = 16x - 9 is a tangent to the curve y = 2x^3 + ax^2 + bx - 9 at the point (1, 7).
Find the values of a and b.

Thanks in advance.
-Covert

Here is a link to the question:

Curve Tangent Question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Covert's question at Yahoo! Answers regarding a line tangent to a cubic and fnding parameters

Hello Covert,

Let's define:

$f(x)=2x^3+ax^2+bx-9$

We are given that the point (1,7) is on the curve, so we must have:

$f(1)=2(1)^3+a(1)^2+b(1)-9=2+a+b-9=a+b-7=7\,\therefore\,a+b=14$

We also know that at the point (1,7), $f(x)$ must have a gradient of 16, the same as the line. Hence, we may compute the derivative of $f(x)$, and then set $f'(1)=16$:

$f'(x)=6x^2+2ax+b$

$f'(1)=6(1)^2+2a(1)+b=6+2a+b=16\,\therefore\,2a+b=10$

We now have the linear system:

$a+b=14$

$2a+b=10$

Subtracting the first from the second, we eliminate $b$ to obtain:

$a=-4$

Substituting for $a$ into the first equation, we find:

$b=18$

Here is a graph showing the function and its tangent line at the given point:

View attachment 584
 

Attachments

  • covertyahoo.jpg
    covertyahoo.jpg
    6.6 KB · Views: 90
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top