MHB What Are the Values of a and b for a Cubic Curve's Tangent Line?

Click For Summary
The tangent line y = 16x - 9 touches the curve y = 2x^3 + ax^2 + bx - 9 at the point (1, 7). To find the values of a and b, the conditions a + b = 14 and 2a + b = 10 are established from the curve's equation and its derivative. Solving this system yields a = -4 and b = 18. The calculations confirm that the tangent line's slope matches the curve's gradient at the specified point. The discussion effectively demonstrates the process of determining parameters for a cubic curve's tangent line.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Curve Tangent Question?

Hello,

The line y = 16x - 9 is a tangent to the curve y = 2x^3 + ax^2 + bx - 9 at the point (1, 7).
Find the values of a and b.

Thanks in advance.
-Covert

Here is a link to the question:

Curve Tangent Question? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Covert's question at Yahoo! Answers regarding a line tangent to a cubic and fnding parameters

Hello Covert,

Let's define:

$f(x)=2x^3+ax^2+bx-9$

We are given that the point (1,7) is on the curve, so we must have:

$f(1)=2(1)^3+a(1)^2+b(1)-9=2+a+b-9=a+b-7=7\,\therefore\,a+b=14$

We also know that at the point (1,7), $f(x)$ must have a gradient of 16, the same as the line. Hence, we may compute the derivative of $f(x)$, and then set $f'(1)=16$:

$f'(x)=6x^2+2ax+b$

$f'(1)=6(1)^2+2a(1)+b=6+2a+b=16\,\therefore\,2a+b=10$

We now have the linear system:

$a+b=14$

$2a+b=10$

Subtracting the first from the second, we eliminate $b$ to obtain:

$a=-4$

Substituting for $a$ into the first equation, we find:

$b=18$

Here is a graph showing the function and its tangent line at the given point:

View attachment 584
 

Attachments

  • covertyahoo.jpg
    covertyahoo.jpg
    6.6 KB · Views: 100
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K