MHB What Does Reducing Z[x] Modulo the Prime Ideal (p) in Polynomial Rings Mean?

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote Section 9.2: Polynomial Rings Over Fields I

I am having some trouble understanding Example 3 on page 300 (see attached)

My problem is mainly with understanding the notation and terminology.

The start of Example 3 reads as follows.

"If p is a prime, the ring Z/pZ[x] obtained by reducing Z[x] modulo the prime ideal (p) is a Principal Ideal Domain, since the coefficients lie in the field Z/pZ ... ... "

To me the ring Z/pZ[x] would be formed by reducing Z modulo p to form three cosets, namely
png.latex
and then forming Z/pZ[x] by taking coeffiients from Z/pZ

I am really unsure what D&F mean by "reducing Z[x] modulo the prime ideal (p)" unless they mean reducing the coefficients of Z[x] to coefficients from Z/pZ.

I am also assuming that when D&F use the notation Z/pZ[x] they are meaning (Z/pZ)[x]Can someone clarify this for me?

Peter
 
Physics news on Phys.org
Peter said:
I am really unsure what D&F mean by "reducing Z[x] modulo the prime ideal (p)" unless they mean reducing the coefficients of Z[x] to coefficients from Z/pZ.

I am also assuming that when D&F use the notation Z/pZ[x] they are meaning (Z/pZ)[x]

I am pretty sure they mean just what you say, the polynomial ring $(\mathbb{Z}/p\mathbb{Z})[x]$ or with other notations, $\mathbb{Z}_p[x]$ or $\left(\mathbb{Z}/(p)\right)[x]$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top