I What Does the F Matrix Look Like for a Linear Bezier Curve?

bobtedbob
Messages
1
Reaction score
0
TL;DR
Rational linear parametric curve and its implicit
form that is a projected image of the algebraic curve
I'm looking at the following web page which looks at rendering bezier curves.

GPU Gems 3 - Chapter 25
Paper on same topic

The mathematics is quite interesting, I was interested to know what the F matrix would look like for for a linear bezier equation. The maths for the quadratic case is in the paper (2nd link) section 3 claim 1. I understand how the M matrix is calculated (and its inverse) but I don't understand how the F matrix was created.

Can someone help explain the F matrix creation process and how it would apply to the linear bezier case?

[Moderator's note: approved.]
 
Last edited by a moderator:
Physics news on Phys.org
In paper (2nd link) section 3 claim 1, the matrix F is a permutation matrix. This matrix F has the given form because the vector ##v=[1\,\, t\,\, t^2]## was rewritten as ##u=[t \,\,t^2\,\, 1]##. This is represented by the matrix F, which is the identity matrix, rewritten with colluns in different order.

It is not clear to me what you mean with the linear bezier case. Is this case? You can find some results on Bézier curves on SearchOnMath that can helps you.
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
2K
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
448
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
8K