I What Does the F Matrix Look Like for a Linear Bezier Curve?

bobtedbob
Messages
1
Reaction score
0
TL;DR
Rational linear parametric curve and its implicit
form that is a projected image of the algebraic curve
I'm looking at the following web page which looks at rendering bezier curves.

GPU Gems 3 - Chapter 25
Paper on same topic

The mathematics is quite interesting, I was interested to know what the F matrix would look like for for a linear bezier equation. The maths for the quadratic case is in the paper (2nd link) section 3 claim 1. I understand how the M matrix is calculated (and its inverse) but I don't understand how the F matrix was created.

Can someone help explain the F matrix creation process and how it would apply to the linear bezier case?

[Moderator's note: approved.]
 
Last edited by a moderator:
Physics news on Phys.org
In paper (2nd link) section 3 claim 1, the matrix F is a permutation matrix. This matrix F has the given form because the vector ##v=[1\,\, t\,\, t^2]## was rewritten as ##u=[t \,\,t^2\,\, 1]##. This is represented by the matrix F, which is the identity matrix, rewritten with colluns in different order.

It is not clear to me what you mean with the linear bezier case. Is this case? You can find some results on Bézier curves on SearchOnMath that can helps you.
 
Last edited:
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...