MHB What does this sum symbol mean?

  • Thread starter Thread starter shamieh
  • Start date Start date
  • Tags Tags
    Mean Sum Symbol
shamieh
Messages
538
Reaction score
0
$\sum_{i=1}^3 2 i = 12$
 
Mathematics news on Phys.org
Hi shamieh,

$$\sum_{i=1}^{n=3} 2 i = 2\sum_{i}^{n=3}i=2\cdot \frac{n(n+1)}{2}=2\cdot \frac{3\cdot 4}{2}=12$$
 
Hello, shamieh!

Exactly what is the question?

$\displaystyle \sum_{i=1}^3 2 i = 12$
$\displaystyle \sum_{i=1}^3 2i \;=\;2(1) + 2(2) + 2(3) \;=\;2 + 4 + 6 \;=\;12$

Yes, it's true . . .
 
Out of curiosity, what is the thread title supposed to mean?
 
shamieh said:
$\sum_{i=1}^3 2 i = 12$

Someone might have told the thread-starter that the symbol $$\sum$$ means summation. But, he/she might have not understood what it is. Assuming my assumption to be correct, I am telling the thread-starter what $$\sum$$ means.

For example, if you are given $$\sum_{x=0}^{5}3x+5$$, here 0 is called the lower limit and 5 is called the upper limit. It means that the expression 3x+5 will be added to itself 6 times changing the value of x every time starting from the lower limit and ending with the upper limit.
So,
$$\begin{array}{ccl}
\displaystyle\sum_{x=0}^{5}3x+5 & = & [3(0)+5]+[3(1)+5]+[3(2)+5]+[3(3)+5]+[3(4)+5]+[3(5)+5] \\
& = & 5+8+11+14+17+20 \\
& = & 75
\end{array}$$

Coming back to the original question (which is easier) :

$$\displaystyle\sum_{i=1}^3 2 i = 12$$ means that $$2i$$ will be added to itself 3 times starting from the lower limit (1) and ending with the upper limit (3).

So,
$$\displaystyle\begin{array}{ccl}\displaystyle\sum_{i=1}^3 2 i & = & 2(1)+2(2)+2(3) \\
& = & 2+4+6 \\
& = & 12
\end{array}$$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top