What Explains the Lack of Current in a PN Junction at Equilibrium?

AI Thread Summary
In a PN junction at equilibrium, the formation of a depletion region leads to an electric field that balances the movement of charge carriers. Electrons from the negatively charged P side and holes from the N side create opposing currents, resulting in zero net current. The currents involved include drift currents, driven by the electric field, and diffusion currents, caused by random thermal motion. These currents cancel each other out, maintaining equilibrium in the junction. Understanding these interactions is crucial for comprehending semiconductor behavior.
unified
Messages
43
Reaction score
0
TL;DR Summary
I am considering a PN junction at equilibrium, and have a couple of questions.
Consider a PN junction doped with say phosphorous on the N side, and Boron on the P side. Initially, there is an opportunity for the electrons just below the N conduction band to drop to the lower available energy states just above the P valence band. This leaves the N side positively charged and the P side negatively charged, forming a depletion region. This means that there will be an electric field pointing in the direction from N to P. Eventually, there will be an equilibrium that is reached, in which case there is no current in the depletion region.

I do not know which of the following explains why there is no current in the depletion region under equilibrium.
1. The electric field causes electrons from the negatively charged P side to flow back to the N type, and in equilibrium this cancels the flow of electrons from N to P. Also, the electric field causes holes to flow from N to P, and this cancels any holes flowing from P to N. The result of these processes is zero net current.
2. There is no current flowing either from N to P or P to N in equilibrium. In equilibrium, the depletion region is essentially an insulator, and while we have an electric field present in the region, the charge is not free to flow.
 
Engineering news on Phys.org
(2) is clearly wrong. The holes and electrons are free to move. (1) is closer, but isn't very clearly stated. Exactly which currents cancel? Try drawing a sketch to show the various currents.
 
phyzguy,

A sketch would include four currents, two from the field (electrons move against the field, holes with the field) and two due to random thermal motions (electrons from P to N, holes from N to P). In equilibrium these effects cancel.
 
unified said:
phyzguy,

A sketch would include four currents, two from the field (electrons move against the field, holes with the field) and two due to random thermal motions (electrons from P to N, holes from N to P). In equilibrium these effects cancel.
Exactly. This is much more clearly stated than your original (1). In semiconductor nomenclature, the currents driven by the electric field are typically called "drift currents" and the currents due to random thermal motions are typically called "diffusion currents". The drift currents obey Ohm's law (J = σE), and the diffusion currents are driven by concentration gradients and obey Fick's law (J=-D∇n).
 
  • Like
  • Informative
Likes unified, berkeman and Baluncore
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top