A What happens when you commute Sx and Sz in spin operators?

Dennmac
Messages
2
Reaction score
3
So we know [Sz, Sx] = ihbar Sy (S with hats on) so what happens if you get [Sx, Sz]? Is it the same result? Just trying to work out if I've gone wrong somewhere
 
Physics news on Phys.org
Dennmac said:
So we know [Sz, Sx] = ihbar Sy (S with hats on) so what happens if you get [Sx, Sz]? Is it the same result? Just trying to work out if I've gone wrong somewhere
In general ##[A, B] = - [B, A]##. The proof is as easy as they come.
 
  • Like
Likes Meir Achuz, vanhees71 and Dale
Facepalm...thank you! Letters are swimming in front my eyes, I think it's time for a break!
 
  • Like
Likes vanhees71, PeroK and Dale
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top