MHB What is a concave function and how is it determined?

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Concave Function
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
I was reading some where that $\sqrt{x}$ is concave function what does it mean.
 
Mathematics news on Phys.org
Re: meaing of concave function

kaliprasad said:
I was reading some where that $\sqrt{x}$ is concave function what does it mean.

Hi kaliprasad,

From wiki, a real-valued function defined on an interval is called convex (or convex downward or concave upward) if the line segment between any two points on the graph of the function lies above or on the graph.
A concave function is the negative of a convex function.

Since the line segment between any 2 points on the graph of $\sqrt x$ lies strictly below the graph, it is strictly concave.
 
Re: meaing of concave function

I had always thought of a concave function, or concave down, over some interval, as having a negative second derivative on that interval. If we have:

$$f(x)=\sqrt{x}$$

then we find:

$$f''(x)=-\frac{1}{4x^{\frac{3}{2}}}$$

Hence, we see that on the interval $(0,\infty)$ we have $f''<0$.
 
Re: meaing of concave function

MarkFL said:
I had always thought of a concave function, or concave down, over some interval, as having a negative second derivative on that interval. If we have:

$$f(x)=\sqrt{x}$$

then we find:

$$f''(x)=-\frac{1}{4x^{\frac{3}{2}}}$$

Hence, we see that on the interval $(0,\infty)$ we have $f''<0$.
That is, of course true, and often the easiest way to use "convex function", but is not the definition of "convex function". A set is "convex" if and only if, given any two points, A and B, in that set the line segment between A and B is also in the set. A function, f, is said to be "convex" ("convex upward" is typically implied by "convex" alone) if and only if the set of all points above the graph of y= f(x) is a convex set. The function is "convex downward" if the set of all points below the graph of y= f(x) is a convex set.
 
Thanks to all of you for the same. The property mentioned by MARKFL helps in chcking if the function is concave
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top