What is a general definition of a limit?

Click For Summary
SUMMARY

The discussion centers on the definition of limits in the context of extended real numbers, specifically addressing cases where \( x_0 = \infty \) and \( L = \infty \). It establishes that the limit of a sequence \( (x_n)_{n\in\mathbb{N}} \) is defined through the epsilon-delta criterion, which is crucial for understanding continuity in functions. The equivalence of limits and continuity is highlighted, emphasizing that limits must be defined before discussing continuous functions. The treatment of infinities in limits is clarified, noting that they lack neighborhoods and thus require distinct definitions.

PREREQUISITES
  • Understanding of extended real numbers
  • Familiarity with epsilon-delta definitions of limits
  • Knowledge of continuous functions and their properties
  • Basic concepts of sequences in real analysis
NEXT STEPS
  • Study the epsilon-delta definition of limits in detail
  • Explore the properties of continuous functions in real analysis
  • Learn about sequences and their convergence criteria
  • Investigate the implications of limits approaching infinity
USEFUL FOR

Mathematics students, educators, and anyone seeking a deeper understanding of limits and continuity in real analysis.

Lotto
Messages
253
Reaction score
16
TL;DR
I was given this definiton of a limit:

Let us have a function ##f: \mathbb{R} \rightarrow \mathbb{C}##. Let ##x_0 \in \mathbb{R}^*## and ##L \in \mathbb{R}^*##. We say ##L## is a limit of a function ##f## for ##x## goes to ##x_0## if

##\forall \varepsilon >0 \, \exists \delta >0 \, \forall x \in P_{\delta}(x_0): f(x) \in U_{\varepsilon}(L)##

(##P## and ##U## are neighborhoods)

Is this definition valid for every type of limit?
I suppose that it is because we are in extended real numbers. But the definition of a limit when ##x_0 = \infty## and let's say ##L=\infty## is different. Why are these definitions equivalent? Isn't the key that ##U_{\varepsilon}(\infty)=\left(\frac {1}{\varepsilon},\infty\right)##?
 
Physics news on Phys.org
What does "I was given" mean?

That definition defines a continuous function ##f,## not a limit. What both connects them is
$$
\lim_{n \to \infty} f(x_n)=f(\lim_{n \to \infty}x_n)=f(x_0)
$$
so the limits both exist, i.e. are finite, and if ##\mathbf f## is continuous. This can be used as an equivalent definition of a at ##x_0## continuous function, but you need the definition of a limit first.

It doesn't make much sense for infinities since they have no neighborhoods. That's why converges to a finite number and grows beyond all finite numbers are treated differently.

A limit ##x_0## of a sequence ##(x_n)_{n\in\mathbb{N}}## is:
$$
\forall \, \varepsilon> 0\,\exists \,N(\varepsilon)\in \mathbb{N}\, \forall\, n>N(\varepsilon)\, : \, x_n\in U_\varepsilon(x_0).
$$
and in case ##x_0=\infty ##
$$
\forall\,M\in\mathbb{R}\,\exists\, N(M)\in \mathbb{N} \, \forall \, n>N(M)\,: \, x_n >M.
$$
and likewise for ##x_0=-\infty .##
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K