MHB What is a simpler method to find the perimeter of triangle AMN?

  • Thread starter Thread starter veronica1999
  • Start date Start date
  • Tags Tags
    Perimeter Triangle
Click For Summary
To find the perimeter of triangle AMN, the area of triangle ABC is calculated using Heron's formula, yielding an area of 135. The radius of the incircle is determined to be 5, leading to a height of 9 for triangle ABC. The side lengths of triangle AMN are derived using the ratio 9:5 based on the incenter's position. The calculations suggest that the perimeter of triangle AMN is 30. A simpler method is sought, focusing on the incenter and angle bisector properties for more straightforward calculations.
veronica1999
Messages
61
Reaction score
0
Triangle ABC has side-lengths AB=12,BC=24,and AC=18. The line
through the incenter of ABC parallel to BC intersects AB at M and AC at
N. What is the perimeter of triangle AMN?
(A)27 (B)30 (C)33 (D)36 (E)42

My friend is saying my solution is too messy and there was no need for the heron's formula. (without telling me how he solved it
:()
Can someone show me a simpler way to solve this?

I used the herons formula to get the area of ABC.
Area is 135.
Then i found the radius of the incircle.
6r+9r+12r = 135
r= 5

The height of the triangle ABC is 45/5 ,
so using the rate of 45/5 : 25/5 which is 9:5
I got the lengths of all the other sides.

12: X = 9:5
60/9

24: X = 9:5
120/9

18 : X = 9:5

90/9


270/9 = 30
 
Mathematics news on Phys.org
veronica1999 said:
Triangle ABC has side-lengths AB=12,BC=24,and AC=18. The line
through the incenter of ABC parallel to BC intersects AB at M and AC at
N. What is the perimeter of triangle AMN?
(A)27 (B)30 (C)33 (D)36 (E)42

My friend is saying my solution is too messy and there was no need for the heron's formula. (without telling me how he solved it
:()
Can someone show me a simpler way to solve this?

I used the herons formula to get the area of ABC.
Area is 135.
Then i found the radius of the incircle.
6r+9r+12r = 135
r= 5

The height of the triangle ABC is 45/5 ,
so using the rate of 45/5 : 25/5 which is 9:5
I got the lengths of all the other sides.

12: X = 9:5
60/9

24: X = 9:5
120/9

18 : X = 9:5

90/9


270/9 = 30
Let $I$ be the incenter.
Let $AI$ meet $BC$ at $D$.

So $\frac{AB}{BD}=\frac{AC}{CD}$.

This gives the exact lengths of $BD$ and $DC$.

Note that $CI$ is the angle bisector of angle $ ACD$.

Again $\frac{AI}{ID}=\frac{AC}{CD}$.

So now you know the value of $\frac{AI}{ID}$.

Note that using similarity in $\Delta ADC$ we have $\frac{AN}{NC}=\frac{AI}{ID}$.

Can you finish?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
997
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K