MHB What is a simpler method to find the perimeter of triangle AMN?

  • Thread starter Thread starter veronica1999
  • Start date Start date
  • Tags Tags
    Perimeter Triangle
AI Thread Summary
To find the perimeter of triangle AMN, the area of triangle ABC is calculated using Heron's formula, yielding an area of 135. The radius of the incircle is determined to be 5, leading to a height of 9 for triangle ABC. The side lengths of triangle AMN are derived using the ratio 9:5 based on the incenter's position. The calculations suggest that the perimeter of triangle AMN is 30. A simpler method is sought, focusing on the incenter and angle bisector properties for more straightforward calculations.
veronica1999
Messages
61
Reaction score
0
Triangle ABC has side-lengths AB=12,BC=24,and AC=18. The line
through the incenter of ABC parallel to BC intersects AB at M and AC at
N. What is the perimeter of triangle AMN?
(A)27 (B)30 (C)33 (D)36 (E)42

My friend is saying my solution is too messy and there was no need for the heron's formula. (without telling me how he solved it
:()
Can someone show me a simpler way to solve this?

I used the herons formula to get the area of ABC.
Area is 135.
Then i found the radius of the incircle.
6r+9r+12r = 135
r= 5

The height of the triangle ABC is 45/5 ,
so using the rate of 45/5 : 25/5 which is 9:5
I got the lengths of all the other sides.

12: X = 9:5
60/9

24: X = 9:5
120/9

18 : X = 9:5

90/9


270/9 = 30
 
Mathematics news on Phys.org
veronica1999 said:
Triangle ABC has side-lengths AB=12,BC=24,and AC=18. The line
through the incenter of ABC parallel to BC intersects AB at M and AC at
N. What is the perimeter of triangle AMN?
(A)27 (B)30 (C)33 (D)36 (E)42

My friend is saying my solution is too messy and there was no need for the heron's formula. (without telling me how he solved it
:()
Can someone show me a simpler way to solve this?

I used the herons formula to get the area of ABC.
Area is 135.
Then i found the radius of the incircle.
6r+9r+12r = 135
r= 5

The height of the triangle ABC is 45/5 ,
so using the rate of 45/5 : 25/5 which is 9:5
I got the lengths of all the other sides.

12: X = 9:5
60/9

24: X = 9:5
120/9

18 : X = 9:5

90/9


270/9 = 30
Let $I$ be the incenter.
Let $AI$ meet $BC$ at $D$.

So $\frac{AB}{BD}=\frac{AC}{CD}$.

This gives the exact lengths of $BD$ and $DC$.

Note that $CI$ is the angle bisector of angle $ ACD$.

Again $\frac{AI}{ID}=\frac{AC}{CD}$.

So now you know the value of $\frac{AI}{ID}$.

Note that using similarity in $\Delta ADC$ we have $\frac{AN}{NC}=\frac{AI}{ID}$.

Can you finish?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top