- #1

I_laff

- 41

- 2

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- I
- Thread starter I_laff
- Start date

- #1

I_laff

- 41

- 2

- #2

pasmith

Homework Helper

2022 Award

- 2,584

- 1,183

\dot x = f(x) [/tex] if and only if [itex]y(t) = Ax(t)[/itex] is also a solution of the ODE, ie. [itex]\dot y = f(y)[/itex]. This requires that [itex]f = A^{-1} \circ f \circ A[/itex].

If you plotted all of the solution curves in phase space, then the resulting diagram would have [itex]A[/itex] as a symmetry.

Example 1: [tex]\begin{pmatrix} \dot x \\ \dot y \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}[/tex] is symmetric with respect to [tex]

\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}[/tex] for any [itex]\theta[/itex].

Example 2: [tex]

\dot x_1 = x_1 + x_2x_3, \qquad \dot x_2 = x_2 + x_1x_3, \qquad \dot x_3 = x_3 + x_1x_2[/tex] is symmetric with respect to any permutation of [itex](x_1, x_2, x_3)[/itex].

Share:

- Last Post

- Replies
- 3

- Views
- 151

- Replies
- 7

- Views
- 252

- Replies
- 2

- Views
- 113

- Last Post

- Replies
- 28

- Views
- 1K

- Last Post

- Replies
- 1

- Views
- 574

- Replies
- 2

- Views
- 60

- Replies
- 2

- Views
- 473

- Replies
- 7

- Views
- 710

- Last Post

- Replies
- 3

- Views
- 817

- Replies
- 3

- Views
- 616