What is density of dark matter as a function of distance from the galactic core?

Click For Summary
The discussion focuses on calculating the density of dark matter as a function of distance from the galactic core. The mass of dark matter, denoted as M2(r), is derived from gravitational equations, leading to the formula M2(r) = (v0^2/G)(r - r1). An average density over a specified interval is calculated, and as the interval approaches zero, the density function is simplified to ρ(r) = (v0^2)/(4πr^2G). Participants confirm the correctness of the calculations and the derived formula for dark matter density.
Lotto
Messages
253
Reaction score
16
Homework Statement
Because of dark matter, our stars in the Galaxy with core of radius ##r_1##, whose matter is distributed spherically symetrically, are moving with speed ##v_0## that is not dependent on distance from the Galaxy's centre. This is true for distances from the centre smaller than ##r_2##. Consider the distribution of dark matter to be spherically symetric around the centre. What is denisty of dark matter dependent on distance ##r## from the Galaxy's centre in interval from ##r_1## to ##r_2##?
Relevant Equations
##G\frac{mM}{r^2}=m\frac {{v_0}^2}{r}##
##M_1=\frac{{v_0}^2r_1}{G}##
This problem builds on my previous post, where we calculated that core's mass is ##M_1=\frac{{v_0}^2r_1}{G}##. So if we consider mass of dark matter dependent on distance ##r## to be ##M_2(r)##, we can calculated it from

##G\frac{(M_2(r)+M_1)m}{r^2}=m\frac{{v_0}^2}{r}.##

So ##M_2(r)=\frac{{v_0}^2}{G}(r-r_1)##.

An average density in interval from ##r## to ##r+\Delta r## is ##\frac{\frac{{v_0}^2}{G}(r+\Delta r-r_1)-\frac{{v_0}^2}{G}(r-r_1)}{\frac 43 \pi [(r+\Delta r)^3-{r_1}^3]-\frac 43 \pi (r^3-{r_1}^3)}##. If we make a limit of it for ##\Delta r \rightarrow 0##, we get

##\rho(r)=\frac{{v_0}^2}{4\pi r^2G}##.

Is it correct? If not, where are my thoughts wrong?
 
Physics news on Phys.org
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?