I see the thread hasn't been moved to physics so I assume it's okay to continue the discussion here
LCKurtz said:
For a sinusoidal voltage and current
Vrms is defined to be the constant voltage that supplies the same power over a single period to a resistance R as the sunusoidal voltage:
P = \frac{V_{rms}^2}{R}
and you have the same type of definition for the current:
P = I_{rms}^2R
If you multiply these two equations by each other you get:
P^2=\frac{V_{rms}^2}{R}\cdot I_{rms}^2R = V_{rms}^2I_{rms}^2
P = \sqrt{V_{rms}^2I_{rms}^2}=V_{rms}I_{rms}
Does that answer your question?
Unless I'm mistaken, I think your answer doesn't answer my question. You explain how to get the formula of average power in terms of V
rms and I
rms but my question is asking about P
rms not P
average. What is the actual meaning of P
rms in electrical circumstances? Is P
rms useful? Do we use P
rms to understand or calculate something?
BruceW said:
I think you got a bit confused here. The average current is not the same as Irms and the average voltage is not the same as Vrms. Usually, in AC electricity the average voltage is zero, since half the time it is negative and half the time it is positive, the average voltage is zero.
Vrms gives an idea of a typical value you might get for the absolute value of the voltage if you measured it. (Absolute meaning unsigned). Vrms=Vmax/√2 For a sinusoidal wave. So for a sinusoidal wave, a typical value for the unsigned voltage is roughly 0.7 times the max voltage.
The power depends on the voltage, so it changes all the time, but it is always positive. The average power is equal to the max power divided by 2. This is also equal to the power when the voltage is equal to Vrms.
In other words, if we replaced the voltage at all times with Vrms, the average power would remain unchanged.
I don't know what you mean by Prms. Do you mean the power given by a voltage equal to Vrms? In this case it is just the average power. Or do you mean the squared variance of the power output?
Ok, now I understand average current is not the same as I
rms. No, I don't think P
rms is the power delivered by V
rms, it should be average power in my opinion. My teacher told me that average and rms power are not the same. That's the reason I'm looking for explanation about it. I want to know what P
rms is and whether it is useful or not.
HallsofIvy said:
"RMS", "root-mean-square" is (almost) exactly what it says. Given a list of numbers, Find the mean (arithmetic average) of the squares of the numbers, then take the square root of that. It is one of many different kinds of "averaging".
Maybe I didn't phrase the question good enough. I know how to find the rms value using the method you explain. I just want to know the meaning of P
rms in electrical circumstances. Based on what you said, rms is one of many different kinds of averaging, it means that we have two values of 'average' power, which are P
average and P
rms. What is the difference of the two average power? We can use average power to know the amount of energy delivered per unit time to a load. What do we use P
rms for?
BruceW said:
Not necessarily. The RMS gives an idea of how much something varies. So the RMS of the power would tell us how much the power varies by. But I don't see why that would be important in circuits. I would have thought only the average power was important...
I have the same opinion that average power is more useful than average power but my teacher said that P
rms is more convenient and better than average power. I don't understand why. I google a bit and find a web that claims rms power is meaningless without further explanation. I'm still confused what rms power is and whether it is useful or not
thanks