What is the AM-GM Inequality Used For?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary

Discussion Overview

The discussion revolves around the application of the AM-GM inequality in determining the minimum value of a specific mathematical expression involving secant and tangent functions. The scope includes mathematical reasoning and problem-solving techniques.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents a mathematical expression to minimize, specifically $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$.
  • Another participant notes that the solution suggests using the AM-GM inequality, indicating a potential approach to the problem.
  • A participant expresses gratitude for contributions and confirms the correctness of a previous answer, though the details of the solution are not provided.

Areas of Agreement / Disagreement

There appears to be a general agreement on the correctness of a solution, but the discussion does not resolve the application of the AM-GM inequality or the specifics of the solution process.

Contextual Notes

The discussion does not clarify the assumptions or conditions under which the AM-GM inequality is applied, nor does it detail any unresolved mathematical steps related to the problem.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ over all $a,b \ne \frac{k \pi}{2}$ where $k$ is in $Z$.
 
Mathematics news on Phys.org
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
 
Here's my solution
Using the usual identity we have

$\dfrac{(\tan^2 a + 1)^2}{\tan^2b}+\dfrac{(\tan^2 b + 1)^2}{\tan^2a}.$

If we let $x = \tan a$ and $y = \tan b$ then we have

$z = \dfrac{(x^2 + 1)^2}{y^2}+\dfrac{(y^2 + 1)^2}{x}.$

Using the standard first derivatives we have (noting that $x,y \ne 0$)

$\dfrac{\partial z}{\partial x} = 4\,{\dfrac { \left( {x}^{2}+1 \right) x}{{y}^{2}}}-2\,{\dfrac { \left( {
y}^{2}+1 \right) ^{2}}{{x}^{3}}}$

$\dfrac{\partial z}{\partial y} = 4\,{\dfrac { \left( {y}^{2}+1 \right) y}{{x}^{2}}}-2\,{\dfrac { \left( {
x}^{2}+1 \right) ^{2}}{{y}^{3}}}$

Simplify and setting these to zero gives

$
\begin{align}
2\,{x}^{6}+2\,{x}^{4}-{y}^{6}-2\,{y}^{4}-{y}^{2} &= 0\;\;\;(*)\\
-{x}^{6}-2\,{x}^{4}-{x}^{2}+2\,{y}^{6}+2\,{y}^{4}&=0
\end{align}$

Multiplying the first by $x^2+1$ and the second by $2x^2$ and adding gives

${y}^{2} \left( {y}^{2}+1 \right) \left( 3\,{y}^{2}{x}^{2}-{y}^{2}-1-{
x}^{2} \right) =0$

from which we can solve for $y^2$ giving $y^2 = \dfrac{x^2+1}{3x^2-1}$ noting that $3x^2-1 \ne 0$. Substituting into (*) and factoring gives $x = \pm 1$ which in turn gives $y = \pm 1$ giving the minimum value of $z$ as $8$. The second derivative test verifies this.
 
Ackbach said:
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
Just a note
If we write your function as

$f(a) = 8 \csc^2 2a$

It becomes obvious that the minimum is 8
 
Hi Ackbach and Jester,

Thank you for participating...and yes, the answer is correct.

The solution that comes along with this particular problem suggests the use of the AM-GM inequality to solve it...let's see...

If we let $x = \tan^2 a$ and $y = \tan^2 b$ then we have

$$\frac{(\tan^2 a + 1)^2}{\tan^2b}+\frac{(\tan^2 b + 1)^2}{\tan^2a} = \frac{(x + 1)^2}{y}+\frac{(y + 1)^2}{x}$$

$$\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2 + 2x+1}{y}+\frac{y^2 +2y+ 1}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left(\frac{x^2}{y}+\frac{1}{y}+\frac{x^2}{y}+ \frac{1}{x}\right)+2(\frac{x}{y}+\frac{y}{x})$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4\sqrt[4]{\frac{x^2}{y}\cdot\frac{1}{y}\cdot\frac{x^2}{y} \cdot\frac{1}{x}}+2\left(2\sqrt{\frac{x}{y}\cdot \frac{y}{x}}\right)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4+4$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 8$$

Equality holds when $x=y=1$, i.e. $a=\pm 45^{\circ}+k\cdot180^{\circ}$, $b=\pm 45^{\circ}+k\cdot180^{\circ}$ for integer $k$.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K