MHB What is the AM-GM Inequality Used For?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum Value
AI Thread Summary
The discussion focuses on applying the AM-GM inequality to determine the minimum value of the expression $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ for angles a and b not equal to $\frac{k \pi}{2}$. Participants confirm the correctness of the solution and emphasize the relevance of the AM-GM inequality in finding the minimum value. The conversation highlights the importance of this mathematical tool in optimization problems. Overall, the AM-GM inequality proves to be a valuable method for solving such expressions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ over all $a,b \ne \frac{k \pi}{2}$ where $k$ is in $Z$.
 
Mathematics news on Phys.org
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
 
Here's my solution
Using the usual identity we have

$\dfrac{(\tan^2 a + 1)^2}{\tan^2b}+\dfrac{(\tan^2 b + 1)^2}{\tan^2a}.$

If we let $x = \tan a$ and $y = \tan b$ then we have

$z = \dfrac{(x^2 + 1)^2}{y^2}+\dfrac{(y^2 + 1)^2}{x}.$

Using the standard first derivatives we have (noting that $x,y \ne 0$)

$\dfrac{\partial z}{\partial x} = 4\,{\dfrac { \left( {x}^{2}+1 \right) x}{{y}^{2}}}-2\,{\dfrac { \left( {
y}^{2}+1 \right) ^{2}}{{x}^{3}}}$

$\dfrac{\partial z}{\partial y} = 4\,{\dfrac { \left( {y}^{2}+1 \right) y}{{x}^{2}}}-2\,{\dfrac { \left( {
x}^{2}+1 \right) ^{2}}{{y}^{3}}}$

Simplify and setting these to zero gives

$
\begin{align}
2\,{x}^{6}+2\,{x}^{4}-{y}^{6}-2\,{y}^{4}-{y}^{2} &= 0\;\;\;(*)\\
-{x}^{6}-2\,{x}^{4}-{x}^{2}+2\,{y}^{6}+2\,{y}^{4}&=0
\end{align}$

Multiplying the first by $x^2+1$ and the second by $2x^2$ and adding gives

${y}^{2} \left( {y}^{2}+1 \right) \left( 3\,{y}^{2}{x}^{2}-{y}^{2}-1-{
x}^{2} \right) =0$

from which we can solve for $y^2$ giving $y^2 = \dfrac{x^2+1}{3x^2-1}$ noting that $3x^2-1 \ne 0$. Substituting into (*) and factoring gives $x = \pm 1$ which in turn gives $y = \pm 1$ giving the minimum value of $z$ as $8$. The second derivative test verifies this.
 
Ackbach said:
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
Just a note
If we write your function as

$f(a) = 8 \csc^2 2a$

It becomes obvious that the minimum is 8
 
Hi Ackbach and Jester,

Thank you for participating...and yes, the answer is correct.

The solution that comes along with this particular problem suggests the use of the AM-GM inequality to solve it...let's see...

If we let $x = \tan^2 a$ and $y = \tan^2 b$ then we have

$$\frac{(\tan^2 a + 1)^2}{\tan^2b}+\frac{(\tan^2 b + 1)^2}{\tan^2a} = \frac{(x + 1)^2}{y}+\frac{(y + 1)^2}{x}$$

$$\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2 + 2x+1}{y}+\frac{y^2 +2y+ 1}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left(\frac{x^2}{y}+\frac{1}{y}+\frac{x^2}{y}+ \frac{1}{x}\right)+2(\frac{x}{y}+\frac{y}{x})$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4\sqrt[4]{\frac{x^2}{y}\cdot\frac{1}{y}\cdot\frac{x^2}{y} \cdot\frac{1}{x}}+2\left(2\sqrt{\frac{x}{y}\cdot \frac{y}{x}}\right)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4+4$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 8$$

Equality holds when $x=y=1$, i.e. $a=\pm 45^{\circ}+k\cdot180^{\circ}$, $b=\pm 45^{\circ}+k\cdot180^{\circ}$ for integer $k$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top