MHB What is the AM-GM Inequality Used For?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
The discussion focuses on applying the AM-GM inequality to determine the minimum value of the expression $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ for angles a and b not equal to $\frac{k \pi}{2}$. Participants confirm the correctness of the solution and emphasize the relevance of the AM-GM inequality in finding the minimum value. The conversation highlights the importance of this mathematical tool in optimization problems. Overall, the AM-GM inequality proves to be a valuable method for solving such expressions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ over all $a,b \ne \frac{k \pi}{2}$ where $k$ is in $Z$.
 
Mathematics news on Phys.org
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
 
Here's my solution
Using the usual identity we have

$\dfrac{(\tan^2 a + 1)^2}{\tan^2b}+\dfrac{(\tan^2 b + 1)^2}{\tan^2a}.$

If we let $x = \tan a$ and $y = \tan b$ then we have

$z = \dfrac{(x^2 + 1)^2}{y^2}+\dfrac{(y^2 + 1)^2}{x}.$

Using the standard first derivatives we have (noting that $x,y \ne 0$)

$\dfrac{\partial z}{\partial x} = 4\,{\dfrac { \left( {x}^{2}+1 \right) x}{{y}^{2}}}-2\,{\dfrac { \left( {
y}^{2}+1 \right) ^{2}}{{x}^{3}}}$

$\dfrac{\partial z}{\partial y} = 4\,{\dfrac { \left( {y}^{2}+1 \right) y}{{x}^{2}}}-2\,{\dfrac { \left( {
x}^{2}+1 \right) ^{2}}{{y}^{3}}}$

Simplify and setting these to zero gives

$
\begin{align}
2\,{x}^{6}+2\,{x}^{4}-{y}^{6}-2\,{y}^{4}-{y}^{2} &= 0\;\;\;(*)\\
-{x}^{6}-2\,{x}^{4}-{x}^{2}+2\,{y}^{6}+2\,{y}^{4}&=0
\end{align}$

Multiplying the first by $x^2+1$ and the second by $2x^2$ and adding gives

${y}^{2} \left( {y}^{2}+1 \right) \left( 3\,{y}^{2}{x}^{2}-{y}^{2}-1-{
x}^{2} \right) =0$

from which we can solve for $y^2$ giving $y^2 = \dfrac{x^2+1}{3x^2-1}$ noting that $3x^2-1 \ne 0$. Substituting into (*) and factoring gives $x = \pm 1$ which in turn gives $y = \pm 1$ giving the minimum value of $z$ as $8$. The second derivative test verifies this.
 
Ackbach said:
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
Just a note
If we write your function as

$f(a) = 8 \csc^2 2a$

It becomes obvious that the minimum is 8
 
Hi Ackbach and Jester,

Thank you for participating...and yes, the answer is correct.

The solution that comes along with this particular problem suggests the use of the AM-GM inequality to solve it...let's see...

If we let $x = \tan^2 a$ and $y = \tan^2 b$ then we have

$$\frac{(\tan^2 a + 1)^2}{\tan^2b}+\frac{(\tan^2 b + 1)^2}{\tan^2a} = \frac{(x + 1)^2}{y}+\frac{(y + 1)^2}{x}$$

$$\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2 + 2x+1}{y}+\frac{y^2 +2y+ 1}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left(\frac{x^2}{y}+\frac{1}{y}+\frac{x^2}{y}+ \frac{1}{x}\right)+2(\frac{x}{y}+\frac{y}{x})$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4\sqrt[4]{\frac{x^2}{y}\cdot\frac{1}{y}\cdot\frac{x^2}{y} \cdot\frac{1}{x}}+2\left(2\sqrt{\frac{x}{y}\cdot \frac{y}{x}}\right)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4+4$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 8$$

Equality holds when $x=y=1$, i.e. $a=\pm 45^{\circ}+k\cdot180^{\circ}$, $b=\pm 45^{\circ}+k\cdot180^{\circ}$ for integer $k$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K