What is the AM-GM Inequality Used For?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
SUMMARY

The forum discussion centers on the application of the AM-GM (Arithmetic Mean-Geometric Mean) Inequality to determine the minimum value of the expression $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ for angles \(a\) and \(b\) not equal to \(\frac{k \pi}{2}\). Participants confirm the correctness of the solution provided, emphasizing the effectiveness of the AM-GM inequality in solving optimization problems involving trigonometric functions. The discussion highlights the importance of understanding inequalities in mathematical analysis.

PREREQUISITES
  • Understanding of trigonometric functions, specifically secant and tangent.
  • Familiarity with the AM-GM inequality and its applications.
  • Basic knowledge of calculus and optimization techniques.
  • Ability to manipulate and simplify algebraic expressions.
NEXT STEPS
  • Study the proofs and applications of the AM-GM inequality in various mathematical contexts.
  • Explore advanced optimization techniques in calculus, focusing on trigonometric functions.
  • Learn about other inequalities such as Cauchy-Schwarz and Jensen's inequality.
  • Practice solving optimization problems involving trigonometric identities and inequalities.
USEFUL FOR

Mathematicians, students studying calculus and inequalities, and anyone interested in optimization problems involving trigonometric functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $$\frac{\sec^4 a}{\tan^2 b}+\frac{\sec^4 b}{\tan^2 a}$$ over all $a,b \ne \frac{k \pi}{2}$ where $k$ is in $Z$.
 
Mathematics news on Phys.org
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
 
Here's my solution
Using the usual identity we have

$\dfrac{(\tan^2 a + 1)^2}{\tan^2b}+\dfrac{(\tan^2 b + 1)^2}{\tan^2a}.$

If we let $x = \tan a$ and $y = \tan b$ then we have

$z = \dfrac{(x^2 + 1)^2}{y^2}+\dfrac{(y^2 + 1)^2}{x}.$

Using the standard first derivatives we have (noting that $x,y \ne 0$)

$\dfrac{\partial z}{\partial x} = 4\,{\dfrac { \left( {x}^{2}+1 \right) x}{{y}^{2}}}-2\,{\dfrac { \left( {
y}^{2}+1 \right) ^{2}}{{x}^{3}}}$

$\dfrac{\partial z}{\partial y} = 4\,{\dfrac { \left( {y}^{2}+1 \right) y}{{x}^{2}}}-2\,{\dfrac { \left( {
x}^{2}+1 \right) ^{2}}{{y}^{3}}}$

Simplify and setting these to zero gives

$
\begin{align}
2\,{x}^{6}+2\,{x}^{4}-{y}^{6}-2\,{y}^{4}-{y}^{2} &= 0\;\;\;(*)\\
-{x}^{6}-2\,{x}^{4}-{x}^{2}+2\,{y}^{6}+2\,{y}^{4}&=0
\end{align}$

Multiplying the first by $x^2+1$ and the second by $2x^2$ and adding gives

${y}^{2} \left( {y}^{2}+1 \right) \left( 3\,{y}^{2}{x}^{2}-{y}^{2}-1-{
x}^{2} \right) =0$

from which we can solve for $y^2$ giving $y^2 = \dfrac{x^2+1}{3x^2-1}$ noting that $3x^2-1 \ne 0$. Substituting into (*) and factoring gives $x = \pm 1$ which in turn gives $y = \pm 1$ giving the minimum value of $z$ as $8$. The second derivative test verifies this.
 
Ackbach said:
Since $a$ and $b$ are symmetric in the expression, I will set $a=b$, and then define
$$f(a)= \frac{2 \sec^{4}(a)}{ \tan^{2}(a)}= \frac{2}{ \cos^{2}(a) \sin^{2}(a)}.$$
Differentiating yields
\begin{align*}
f'(a)&= \frac{-2(-2 \cos(a) \sin^{3}(a)+2 \sin(a) \cos^{3}(a))}{ \cos^{4}(a) \sin^{4}(a)} \\
&= \frac{-4 \sin(a) \cos(a) [ \cos^{2}(a)- \sin^{2}(a)]}{ \sin^{4}(a) \cos^{4}(a)} \\
&= \frac{-4 \cos(2a)}{ \sin^{3}(a) \cos^{3}(a)}.
\end{align*}
Setting $f'(a)=0$ implies that
$$2a= \frac{(2j+1) \pi}{2} \implies a=\frac{(2j+1) \pi}{4}.$$
Just to make sure, let us look for values of $a\in (0, \pi) \setminus \{\pi/2 \}$. This turns out to require $j=0,1$, and therefore $a\in \{ \pi/4, 3 \pi/4 \}$. Plugging either of these into $f$ yields the minimum value of $8$.

To be complete, we should take the second derivative $f''(a)$, and show that it is positive at these values. I will leave that to the reader.
Just a note
If we write your function as

$f(a) = 8 \csc^2 2a$

It becomes obvious that the minimum is 8
 
Hi Ackbach and Jester,

Thank you for participating...and yes, the answer is correct.

The solution that comes along with this particular problem suggests the use of the AM-GM inequality to solve it...let's see...

If we let $x = \tan^2 a$ and $y = \tan^2 b$ then we have

$$\frac{(\tan^2 a + 1)^2}{\tan^2b}+\frac{(\tan^2 b + 1)^2}{\tan^2a} = \frac{(x + 1)^2}{y}+\frac{(y + 1)^2}{x}$$

$$\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2 + 2x+1}{y}+\frac{y^2 +2y+ 1}{x}$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left(\frac{x^2}{y}+\frac{1}{y}+\frac{x^2}{y}+ \frac{1}{x}\right)+2(\frac{x}{y}+\frac{y}{x})$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4\sqrt[4]{\frac{x^2}{y}\cdot\frac{1}{y}\cdot\frac{x^2}{y} \cdot\frac{1}{x}}+2\left(2\sqrt{\frac{x}{y}\cdot \frac{y}{x}}\right)$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 4+4$$

$$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ge 8$$

Equality holds when $x=y=1$, i.e. $a=\pm 45^{\circ}+k\cdot180^{\circ}$, $b=\pm 45^{\circ}+k\cdot180^{\circ}$ for integer $k$.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K