- #1

- 127

- 5

The average angle made by a curve ##f(x)## between ##x=a## and ##x=b## is:

$$\alpha=\frac{\int_a^b\tan^{-1}{(f'(x))}}{b-a}$$

I don't think there should be any questions on that. Since ##f'(x)## is the value of ##\tan{\theta}## at every point, so ##tan^{-1}{(f'(x))}##, should be the angle made by the curve at that point.

Now, I expected this to hold:

$$\tan^{-1}\left({\frac{f{(b})-f{(a)}}{b-a}}\right)=\alpha=\frac{\int_a^b\tan^{-1}{(f'(x))}}{b-a}$$

because, ##\tan^{-1}\left({\frac{f{(b})-f{(a)}}{b-a}}\right)## is also the 'average angle' made by the curve between ##x=a## and ##x=b##.

It was true only approximately for ##f(x)=\log{|\sec{x}|}## when I checked for ##a=0## and ##b=\frac{\pi}{4}##. It obviously holds for linear functions and I checked that it only approximately holds for quadratic functions. I don't know anything beyond high-school calculus, so couldn't check it for polynomials of degree greater than ##2##.

I also tried root-mean-square instead of average angle but that expression too didn't hold accurately.

I took one step further and replaced ##\tan^{-1}{x}## with any function ##g(x)## and expected this to hold:

$$g\left({\frac{f{(b})-f{(a)}}{b-a}}\right)=k=\frac{\int_a^bg{(f'(x))}}{b-a}$$

But this one too only holds approximately for some ##g(x)## that I checked.

So, why don't these expressions hold as expected?

$$\alpha=\frac{\int_a^b\tan^{-1}{(f'(x))}}{b-a}$$

I don't think there should be any questions on that. Since ##f'(x)## is the value of ##\tan{\theta}## at every point, so ##tan^{-1}{(f'(x))}##, should be the angle made by the curve at that point.

Now, I expected this to hold:

$$\tan^{-1}\left({\frac{f{(b})-f{(a)}}{b-a}}\right)=\alpha=\frac{\int_a^b\tan^{-1}{(f'(x))}}{b-a}$$

because, ##\tan^{-1}\left({\frac{f{(b})-f{(a)}}{b-a}}\right)## is also the 'average angle' made by the curve between ##x=a## and ##x=b##.

It was true only approximately for ##f(x)=\log{|\sec{x}|}## when I checked for ##a=0## and ##b=\frac{\pi}{4}##. It obviously holds for linear functions and I checked that it only approximately holds for quadratic functions. I don't know anything beyond high-school calculus, so couldn't check it for polynomials of degree greater than ##2##.

I also tried root-mean-square instead of average angle but that expression too didn't hold accurately.

I took one step further and replaced ##\tan^{-1}{x}## with any function ##g(x)## and expected this to hold:

$$g\left({\frac{f{(b})-f{(a)}}{b-a}}\right)=k=\frac{\int_a^bg{(f'(x))}}{b-a}$$

But this one too only holds approximately for some ##g(x)## that I checked.

So, why don't these expressions hold as expected?

Last edited: