What is the angular frequency of oscillation?

Click For Summary

Homework Help Overview

The discussion revolves around determining the angular frequency of oscillation for a physical pendulum, given its angular displacement and angular acceleration. The original poster presents an equation involving angular acceleration and displacement but expresses confusion about its applicability in the context of simple harmonic motion.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the relationship between angular acceleration and angular displacement, questioning the use of certain equations under varying conditions of acceleration. There is a discussion about the fundamental principles of simple harmonic motion and how they relate to rotational motion.

Discussion Status

Some participants have provided guidance on the relevant equations for rotational simple harmonic motion, suggesting that the original poster should focus on the equation α = -ω²θ. There is an ongoing exploration of the implications of the formulas presented, with some participants seeking clarification on their application.

Contextual Notes

There is a noted confusion regarding the constants and variables involved in the equations, particularly the amplitude and time, which are not known in this context. The discussion reflects an attempt to reconcile these variables with the formulas for angular motion.

hidemi
Messages
206
Reaction score
36
Homework Statement
At the instant its angular displacement is 0.32 rad, the angular acceleration of a physical pendulum is -630 rad/s2. What is its angular frequency of oscillation?
A) 6.6 rad/s
B) 14 rad/s
C) 20 rad/s
D) 44 rad/s
E) 200 rad/s

The answer is D
Relevant Equations
ω^2 = (ωo)^2 + 2αθ
ω^2 - (ωo)^2
= 2 (-630) (0.32)
= -403.2

This is what I have now and I stuck here.
 
Physics news on Phys.org
hidemi said:
Homework Statement:: At the instant its angular displacement is 0.32 rad, the angular acceleration of a physical pendulum is -630 rad/s2. What is its angular frequency of oscillation?
A) 6.6 rad/s
B) 14 rad/s
C) 20 rad/s
D) 44 rad/s
E) 200 rad/s

The answer is D
Relevant Equations:: ω^2 = (ωo)^2 + 2αθ

ω^2 - (ωo)^2
= 2 (-630) (0.32)
= -403.2

This is what I have now and I stuck here.
During simple harmonic motion (SHM), acceleration (α) changes. "ω^2 = (ωo)^2 + 2αθ" is for constant angular accelelation, so can't be used in this question.

For linear SHM in the x-direction say, the essential relationships (the things that make it simple harmonic motion) are that:
- the magnitude of acceleration (a) is proportional to the magnitude of displacement (x) and
- acceleration acts in the opposite direction to the displacement.

This can be expressed as: a = -kx where k is a positive constant.. Note that a and x are functions of time, a(t) and x(t). With some calculus you can show k = ω² where ω is the angular frequency. So we can write
a = -ω²x
This is a key formula you need to understand/learn.

For rotational SHM (e.g. thinking about a pendulum in terms of angular changes) the equivalent formula is
α = -ω²θ
(It's basically the same formula as "a = -ω²x" but α(t) is angular acceleration and θ(t) is angular displacement.)

If you use this formula you can find ω.
 
  • Like
Likes   Reactions: hidemi
Steve4Physics said:
During simple harmonic motion (SHM), acceleration (α) changes. "ω^2 = (ωo)^2 + 2αθ" is for constant angular accelelation, so can't be used in this question.

For linear SHM in the x-direction say, the essential relationships (the things that make it simple harmonic motion) are that:
- the magnitude of acceleration (a) is proportional to the magnitude of displacement (x) and
- acceleration acts in the opposite direction to the displacement.

This can be expressed as: a = -kx where k is a positive constant.. Note that a and x are functions of time, a(t) and x(t). With some calculus you can show k = ω² where ω is the angular frequency. So we can write
a = -ω²x
This is a key formula you need to understand/learn.

For rotational SHM (e.g. thinking about a pendulum in terms of angular changes) the equivalent formula is
α = -ω²θ
(It's basically the same formula as "a = -ω²x" but α(t) is angular acceleration and θ(t) is angular displacement.)

If you use this formula you can find ω.
Thank you. I think I got it but just want to double check:

θ = A * sin(ωt)
ω = Aω * cos(ωt)
α = -Aω^2 * sin(ωt)

the last formula is what you were referring, correct?
 
hidemi said:
Thank you. I think I got it but just want to double check:

θ = A * sin(ωt)
ω = Aω * cos(ωt)
α = -Aω^2 * sin(ωt)

the last formula is what you were referring, correct?
Yes, use the last equation. It's a straightforward substitution.
 
  • Like
Likes   Reactions: hidemi and Delta2
kuruman said:
Yes, use the last equation. It's a straightforward substitution.
Thank you so much.
 
hidemi said:
Thank you. I think I got it but just want to double check:

θ = A * sin(ωt)
ω = Aω * cos(ωt)
α = -Aω^2 * sin(ωt)

the last formula is what you were referring, correct?
Hi @hidemi. I'm not sure if there is some confusion here, so I'm adding this. The three formulae you list are:
θ = A sin(ωt)
ω = Aω cos(ωt)
α = -Aω² sin(ωt)

You cannot use the last formula directly, because you do not know A or t.

However note that if you substitute "θ = A sin(ωt)" (the first formula) into the last formula, you can easily show that α = -ω²θ. And "α = -ω²θ" is the formula you need to solve this problem.
 
  • Like
Likes   Reactions: hidemi
Steve4Physics said:
Hi @hidemi. I'm not sure if there is some confusion here, so I'm adding this. The three formulae you list are:
θ = A sin(ωt)
ω = Aω cos(ωt)
α = -Aω² sin(ωt)

You cannot use the last formula directly, because you do not know A or t.

However note that if you substitute "θ = A sin(ωt)" (the first formula) into the last formula, you can easily show that α = -ω²θ. And "α = -ω²θ" is the formula you need to solve this problem.
Thanks for the clarification!
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
891
  • · Replies 17 ·
Replies
17
Views
1K
Replies
5
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
1K