What is the angular frequency of oscillation?

Click For Summary
SUMMARY

The discussion centers on calculating the angular frequency of oscillation for a physical pendulum with an angular acceleration of -630 rad/s² and an angular displacement of 0.32 rad. The relevant equation used is ω² = (ωo)² + 2αθ, leading to the conclusion that the angular frequency is 44 rad/s, which corresponds to option D. Participants emphasized the importance of understanding the relationship between angular acceleration and displacement in simple harmonic motion (SHM), particularly using the formula α = -ω²θ for rotational systems.

PREREQUISITES
  • Understanding of simple harmonic motion (SHM)
  • Familiarity with angular displacement and angular acceleration
  • Knowledge of the equation ω² = (ωo)² + 2αθ
  • Basic calculus for deriving relationships in SHM
NEXT STEPS
  • Study the derivation of the formula α = -ω²θ in detail
  • Explore the implications of angular frequency in different physical systems
  • Learn about the differences between linear and rotational SHM
  • Investigate the role of amplitude (A) in oscillatory motion equations
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and oscillatory motion, as well as educators seeking to clarify concepts of angular frequency and simple harmonic motion.

hidemi
Messages
206
Reaction score
36
Homework Statement
At the instant its angular displacement is 0.32 rad, the angular acceleration of a physical pendulum is -630 rad/s2. What is its angular frequency of oscillation?
A) 6.6 rad/s
B) 14 rad/s
C) 20 rad/s
D) 44 rad/s
E) 200 rad/s

The answer is D
Relevant Equations
ω^2 = (ωo)^2 + 2αθ
ω^2 - (ωo)^2
= 2 (-630) (0.32)
= -403.2

This is what I have now and I stuck here.
 
Physics news on Phys.org
hidemi said:
Homework Statement:: At the instant its angular displacement is 0.32 rad, the angular acceleration of a physical pendulum is -630 rad/s2. What is its angular frequency of oscillation?
A) 6.6 rad/s
B) 14 rad/s
C) 20 rad/s
D) 44 rad/s
E) 200 rad/s

The answer is D
Relevant Equations:: ω^2 = (ωo)^2 + 2αθ

ω^2 - (ωo)^2
= 2 (-630) (0.32)
= -403.2

This is what I have now and I stuck here.
During simple harmonic motion (SHM), acceleration (α) changes. "ω^2 = (ωo)^2 + 2αθ" is for constant angular accelelation, so can't be used in this question.

For linear SHM in the x-direction say, the essential relationships (the things that make it simple harmonic motion) are that:
- the magnitude of acceleration (a) is proportional to the magnitude of displacement (x) and
- acceleration acts in the opposite direction to the displacement.

This can be expressed as: a = -kx where k is a positive constant.. Note that a and x are functions of time, a(t) and x(t). With some calculus you can show k = ω² where ω is the angular frequency. So we can write
a = -ω²x
This is a key formula you need to understand/learn.

For rotational SHM (e.g. thinking about a pendulum in terms of angular changes) the equivalent formula is
α = -ω²θ
(It's basically the same formula as "a = -ω²x" but α(t) is angular acceleration and θ(t) is angular displacement.)

If you use this formula you can find ω.
 
  • Like
Likes   Reactions: hidemi
Steve4Physics said:
During simple harmonic motion (SHM), acceleration (α) changes. "ω^2 = (ωo)^2 + 2αθ" is for constant angular accelelation, so can't be used in this question.

For linear SHM in the x-direction say, the essential relationships (the things that make it simple harmonic motion) are that:
- the magnitude of acceleration (a) is proportional to the magnitude of displacement (x) and
- acceleration acts in the opposite direction to the displacement.

This can be expressed as: a = -kx where k is a positive constant.. Note that a and x are functions of time, a(t) and x(t). With some calculus you can show k = ω² where ω is the angular frequency. So we can write
a = -ω²x
This is a key formula you need to understand/learn.

For rotational SHM (e.g. thinking about a pendulum in terms of angular changes) the equivalent formula is
α = -ω²θ
(It's basically the same formula as "a = -ω²x" but α(t) is angular acceleration and θ(t) is angular displacement.)

If you use this formula you can find ω.
Thank you. I think I got it but just want to double check:

θ = A * sin(ωt)
ω = Aω * cos(ωt)
α = -Aω^2 * sin(ωt)

the last formula is what you were referring, correct?
 
hidemi said:
Thank you. I think I got it but just want to double check:

θ = A * sin(ωt)
ω = Aω * cos(ωt)
α = -Aω^2 * sin(ωt)

the last formula is what you were referring, correct?
Yes, use the last equation. It's a straightforward substitution.
 
  • Like
Likes   Reactions: hidemi and Delta2
kuruman said:
Yes, use the last equation. It's a straightforward substitution.
Thank you so much.
 
hidemi said:
Thank you. I think I got it but just want to double check:

θ = A * sin(ωt)
ω = Aω * cos(ωt)
α = -Aω^2 * sin(ωt)

the last formula is what you were referring, correct?
Hi @hidemi. I'm not sure if there is some confusion here, so I'm adding this. The three formulae you list are:
θ = A sin(ωt)
ω = Aω cos(ωt)
α = -Aω² sin(ωt)

You cannot use the last formula directly, because you do not know A or t.

However note that if you substitute "θ = A sin(ωt)" (the first formula) into the last formula, you can easily show that α = -ω²θ. And "α = -ω²θ" is the formula you need to solve this problem.
 
  • Like
Likes   Reactions: hidemi
Steve4Physics said:
Hi @hidemi. I'm not sure if there is some confusion here, so I'm adding this. The three formulae you list are:
θ = A sin(ωt)
ω = Aω cos(ωt)
α = -Aω² sin(ωt)

You cannot use the last formula directly, because you do not know A or t.

However note that if you substitute "θ = A sin(ωt)" (the first formula) into the last formula, you can easily show that α = -ω²θ. And "α = -ω²θ" is the formula you need to solve this problem.
Thanks for the clarification!
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
869
  • · Replies 17 ·
Replies
17
Views
1K
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
1K